

Rare Kaon Decays

German Valencia

$K\to\pi\nu\bar\nu$

- At the Littenberg fest we have to talk about the `Littenberg mode'.
- We have already heard about this in this FEST, but I will try to add a theory perspective
- precise determination of SM parameters
- or: ruling out new physics for over 25 years G. Valencia, Monash University

reviews on rare kaon decays

• SUSY John Hagelin

Rare Kaon Decays Prog.Part.Nucl.Phys. 23 (1989) 1

JOHN S. HAGELIN* and LAURENCE S. LITTENBERG[†]

*Maharishi International University, Fairfield, IA 52556, U.S.A. †Brookhaven National Laboratory, Upton, NY 11973, U.S.A.

• ChPT, long distance

RARE AND RADIATIVE KAON DECAYS

Ann.Rev.Nucl.Part.Sci. 43 (1993) 729-792

L. Littenberg¹ and G. Valencia²

¹Physics Department, Brookhaven National Laboratory, Upton, NY 11973; ²Theoretical Physics, Fermi National Accelerator Laboratory, Batavia, IL 60510

Rare Kaon Decays - PDB

Mada	90% CL	E-m ² t	Vn /D of
Mode	upper mint	Exp t	II./ nel.
$\overline{K^+ \!\rightarrow\! \pi^+ e^- \mu^+}$	1.2×10^{-11}	BNL-865	2005/Ref. 21
$K^+ \rightarrow \pi^+ e^+ \mu^-$	5.2×10^{-10}	BNL-865	2000/Ref. 18
$K_L \rightarrow \mu e$	4.7×10^{-12}	BNL-871	1998/Ref. 22
$K_L \rightarrow \pi^0 e \mu$	7.6×10^{-11}	KTeV	2008/Ref. 23
$K_L \rightarrow \pi^0 \pi^0 e \mu$	1.7×10^{-10}	KTeV	2008/Ref. 23

 Λ_{NP} > 100 TeV CMS h $\rightarrow \mu \tau$??

Rare Kaon Decays

Rare Kaon Decays

CP-violating decay $K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$

Laurence S. Littenberg Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (Received 6 January 1989)

The process $K_L^0 \to \pi^0 v \bar{v}$ offers perhaps the clearest window yet proposed into the origin of *CP* violation. The largest expected contribution to this decay is a direct *CP*-violating term at $\approx \text{few} \times 10^{-12}$. The indirect *CP*-violating contribution is some 3 orders of magnitude smaller, and *CP*-conserving contributions are also estimated to be extremely small. Although this decay has never been directly probed, a branching ratio upper limit of $\sim 1\%$ can be extracted from previous data on $K_L^0 \to 2\pi^0$. This leaves an enormous range in which to search for new physics. If the Kobayashi-Maskawa (KM) model prediction can be reached, a theoretically clean determination of the KM product $\sin\theta_2 \sin\theta_3 \sin\delta$ can be made.

 $B(K_L^0 \to \pi^0 \nu \bar{\nu})_{\epsilon} = 5.18 \times 10^{-6} \times 4.18 \times 3$ $\times 0.70 \times 10^{-6} (10.99 \times 10^{-3})^2$ $\approx 5.5 \times 10^{-15}$ $B(K_L^0 \to \pi^0 \nu \bar{\nu})_{\text{direct}} = 4.18 \times 3$ $\times 0.70 \times 10^{-6} (1.07 \times 10^{-3})^2$ $\approx 10^{-11}.$

Basics in SM

$$\mathcal{A}_q(s \to d\nu\bar{\nu}) \propto \lambda_q m_q^2 \propto \begin{cases} m_t^2(\lambda^5 + i\lambda^5), & q = t, \\ m_c^2(\lambda + i\lambda^5), & q = c, \\ \Lambda_{\rm QCD}^2\lambda, & q = u, \end{cases}$$

charm contributes to real part, $K^{\scriptscriptstyle +}$ but irrelevant for imaginary part $K_{\scriptscriptstyle L}$

Isospin and isospin breaking

- isospin breaking corrections: quark masses, electroweak radiative corrections
- reduce B (K⁺ $\rightarrow \pi^+ \nu\nu$) and B(K_L $\rightarrow \pi^0 \nu\nu$) relative to B(K⁺ $\rightarrow \pi^0 e^+ \nu$) by 10% and 5.6%, respectively

W.J. Marciano, Zohreh Parsa Phys.Rev. D53 (1996) 1-5

Latest (?) results

$$B\left(K^{+} \to \pi^{+}\nu\overline{\nu}(\gamma)\right) = \kappa_{+}(1 + \Delta_{\mathrm{EM}}) \begin{bmatrix} \left(\frac{\mathrm{Im}(V_{ts}^{\star}V_{td})}{\lambda^{5}}\right)^{2} + \left(\frac{\mathrm{Re}(V_{cs}^{\star}V_{cd})}{\lambda}(P_{c} + \delta_{c,u}) + \frac{\mathrm{Re}(V_{ts}^{\star}V_{td})}{\lambda^{5}}X_{t}\right)^{2} \end{bmatrix}$$

$$\kappa_{+} = r_{K^{+}} \frac{3\alpha^{2}Br(K^{+} \to \pi^{0}e^{+}\nu)}{2\pi^{2}\sin^{4}\Theta_{\mathrm{W}}}\lambda^{8}$$
NNLO QCD, 2 loop EW
NLO QCD and 2 loop EW

$$B(K_L \to \pi^0 \nu \overline{\nu}) = \kappa_L \left(\frac{\operatorname{Im}(V_{ts}^{\star} V_{td})}{\lambda^5} X_t \right)^2 \qquad \qquad \kappa_L = \frac{r_{K_L}}{r_{K^+}} \frac{\tau(K_L)}{\tau(K^+)} \kappa_+ = 1.80 \cdot 10^{-10}$$

latest numerical results K⁺

Brod, Gorbahn, Stamou 2011: (7.81^{+0.80}-0.71 ± 0.29) × 10⁻¹¹ Buras, Buttazzo, Girrbach-Noe, Knegjens 2015: (9.11 ± 0.72) × 10⁻¹¹

latest numerical results K_L

Brod, Gorbahn, Stamou 2011: ($2.43^{+0.40}_{-0.37} \pm 0.06$) × 10⁻¹¹ Buras, Buttazzo, Girrbach-Noe, Knegjens 2015: (3.00 ± 0.30) × 10⁻¹¹

add Laurie's result

Brod, Gorbahn, Stamou 2011: (2.43^{+0.40}- $_{-0.37}$ ± 0.06) × 10⁻¹¹

Buras, Buttazzo, Girrbach–Noe, Knegjens 2015: (3.00 \pm 0.30) \times 10 $^{-11}$

paraphrase Milind Diwan according to Laurie

(calculation) so clean, theorists are not really needed!

SM parametric error

,

$|V_{ub}| = \begin{cases} (3.72 \pm 0.14) \times 10^{-3} & \text{excl} \\ (4.40 \pm 0.25) \times 10^{-3} & \text{incl} \\ (3.88 \pm 0.29) \times 10^{-3} & \text{avg} \end{cases}$ $|V_{cb}| = \begin{cases} (39.36 \pm 0.75) \times 10^{-3} & \text{excl} \\ (42.21 \pm 0.78) \times 10^{-3} & \text{incl} \\ (40.7 \pm 1.4) \times 10^{-3} & \text{avg} \end{cases}$ $\gamma = (73.2^{+6.3}_{-7.0})^{\circ}.$

Wolfenstein parameters and Jarlskog invariant:

Observable	Central ± 1 σ	±2σ
A	0.810 [+0.018 -0.024]	0.810 [+0.025 -0.030]
λ	0.22548 [+0.00068 -0.00034]	0.22548 [+0.00096 -0.00068]
Qbar	0.1453 [+0.0133 -0.0073]	0.145 [+0.032 -0.015]
ηbar	0.343 [+0.011 -0.012]	0.343 [+0.022 -0.025]
J [10 ⁻⁵]	2.96 [+0.19 -0.18]	2.96 [+0.30 -0.22]

CKMfitter

SM P_c and $X(x_t)$ error

future projections

generic New Physics possibilities

- tree-level FCNC in new neutral bosons
- new charged scalars or vectors
- new heavy fermions

N

specific New Physics models

Phys.Lett. B588 (2004) 74-80

Trivial' SUSY Prog.Part.Nucl.Phys. 23 (1989) 1

Deandrea, Welzel, Oertel

R parity violation

Family gauge boson PHYSICAL REVIEW D 92, 036009 (2015)

••• (not as many as for the 750 GeV diphoton)

Grossman and Nir

Abstract

ELSEVIER

10 April 1997

PHYSICS LETTERS B

Physics Letters B 398 (1997) 163-168

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ beyond the Standard Model *

Yuval Grossman^a, Yosef Nir^b ^a Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA ^b Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

> Received 29 January 1997 Editor: M. Dine

simplified notation

We analyze the decay $K_L \to \pi^0 \nu \bar{\nu}$ in a model independent way. If lepton flavor is conserved the final state is (to a good approximation) purely CP even. In that case this decay mode goes mainly through CP violating interference between mixing and decay. Consequently, a theoretically clean relation between the measured rate and electroweak parameters holds in any given model. Specifically, $\Gamma(K_L \to \pi^0 \nu \bar{\nu}) / \Gamma(K^+ \to \pi^+ \nu \bar{\nu}) = \sin^2 \theta$ (up to known isospin corrections), where θ is the relative CP violating phase between the $K - \bar{K}$ mixing amplitude and the $s \to d\nu\bar{\nu}$ decay amplitude. The experimental bound on BR($K^+ \to \pi^+ \nu \bar{\nu}$) provides a model independent upper bound: BR($K_L \to \pi^0 \nu \bar{\nu}$) < 1.1 × 10⁻⁸. In models with lepton flavor violation, the final state is not necessarily a CP eigenstate. Then CP conserving contributions can dominate the decay rate. © 1997 Published by Elsevier Science B.V.

$BR(K^+ \to \pi^+ \nu \overline{\nu}) = \kappa_+ |\xi X - P_{(u,c)}|^2, \quad BR(K_L \to \pi^0 \nu \overline{\nu}) = \kappa_L \operatorname{Im}(\xi X)^2,$

- beyond SM modifies the complex quantity X
- $Im(X) \leq |X|$ combined with known isospin corrections

$$\mathscr{B}(K_L \to \pi^0 v \bar{v}) \lesssim 4.3 \times \mathscr{B}(K^+ \to \pi^+ v \bar{v})$$

< 1.4×10^{-9} . (GN bound)

sample of recent models

 $K \rightarrow \pi \; v \; v$ decay beyond the Standard Model

June 2010 by F. Mescia & C. Smith

the fourth generation

- perfect example of complementarity between flavour physics and LHC
- kaons constraining 4th generation parameters until 2012
- Higgs found in 2012: 4th generation ruled out

Buras-MFV

• start with a Z':

$$\sim \sim \sim \sim \sim \sim \sim i_{\alpha} i_{\alpha} i_{\gamma_{\mu}} \delta_{\alpha\beta} \left[\Delta_{L}^{ij}(Z') P_{L} + \Delta_{R}^{ij}(Z') P_{R} \right]$$

• write NP in terms of SM:

$$X(x_t) \to X(x_t)_{\rm SM} + \frac{\pi^2}{2M_W^2 G_{\rm F}^2} \frac{\Delta_L^{\nu\nu}(Z^{(\prime)})}{V_{ts}^* V_{td} M_Z^{(\prime)2}} \left[\Delta_L^{sd}(Z^{(\prime)}) + \Delta_R^{sd}(Z^{(\prime)}) \right]$$

- define MFV as $\Delta_R^{sd}(Z') = 0, \ \Delta_L^{sd}(Z') = \left|\Delta_L^{sd}(Z')\right| e^{\phi_{\lambda_t}}$
- scan `reasonable' parameters

Non-universal Z'

- based on $SU(3)xSU(2)_LxSU(2)_RxU(1)_{B-L}$
- Single out the third generation
- generically this produces a pattern of couplings:

 $\tan \theta_R = \frac{g}{g_R}$

- From LEP and LEPII using

$$R_b, A^b_{FB}, and \sigma(e^+e^- \rightarrow \tau^+ \tau^-):$$

 $\cot \theta_R \tan \theta_W \left(\frac{M_W}{M_{Z'}}\right) \leq 1$

- For $\cot \theta_R \sim 10 \implies M_{Z'} > 450 \text{ GeV}$
- Perturbative unitarity $\cot \theta_R \leq 20$

$$Z' \bigvee f_{1,2} \\ \sim g \tan \theta_R \\ f_{1,2}$$

Z' couplings and FCNC operators

Z' coupling to tau-neutrino is enhanced, and it is right-handed

An example Z'

New Physics in charm?

$$B\left(K_L \to \pi^0 \nu \overline{\nu}\right) = \kappa_L \left(\frac{\operatorname{Im}\left(V_{ts}^{\star} V_{td}\right)}{\lambda^5} X_t\right)^2 + \left(\frac{\operatorname{Re}(V_{cs}^{\star} V_{cd})}{\lambda} X'(x_c) \operatorname{Im}(\kappa_{cd}^R \kappa_{cs}^{\star R})\right)^2 + \frac{\operatorname{Re}(V_{cs}^{\star} V_{cd})}{\lambda} X'(x_c) \operatorname{Im}(\kappa_{cd}^L + \kappa_{cs}^{\star L})$$

menu of constraints

Process	Eq.	Constraint	#
$D \rightarrow \ell \nu$	(14)	$ \operatorname{Re}(\kappa_{cd}^{\mathrm{L}} - \kappa_{cd}^{\mathrm{R}}) \le 0.04$	
$D_s \rightarrow \ell \nu$	(15)	$0 \le \operatorname{Re}(\kappa_{cs}^{\mathrm{L}} - \kappa_{cs}^{\mathrm{R}}) \le 0.1$	2
$b \rightarrow c \ell \bar{\nu}$	(22)	$-0.13 \leq \operatorname{Re} \kappa_{ch}^{R} \leq 0$	3
$B \rightarrow J/\psi K, \ \eta_c K$	(31)	$-5 \times 10^{-4} \leq \text{Im}(\kappa_{cb}^{\text{R}} + \kappa_{cs}^{\text{R}}) \leq 0.04$	4
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	(58)	$-1.3 \times 10^{-3} \le \text{Re}(\kappa_{cd}^{\text{L}} + \kappa_{cs}^{\text{L}}) + 0.42 \text{Im}\kappa_{cs}^{\text{L}} \le 2.5 \times 10^{-4}$	5
$K_L \rightarrow \mu^+ \mu^-$	(63)	$ \text{Re}(\kappa_{cs}^{\text{L}} + \kappa_{cd}^{\text{L}}) + 6 \times 10^{-4} \text{Im}\kappa_{cs}^{\text{L}} \le 1.5 \times 10^{-4}$	6
ΔM_K	(67)	$ 0.043 \operatorname{Re}(\kappa_{cd}^{L} + \kappa_{cs}^{L}) - 0.015 \operatorname{Im} \kappa_{cs}^{L} - \operatorname{Re}(\kappa_{cd}^{R*} \kappa_{cs}^{R}) + 0.28 \operatorname{Im}(\kappa_{cd}^{R*} \kappa_{cs}^{R}) \le 8.5 \times 10^{-4}$	7
ϵ (mixing)	(69)	$ 0.015 \operatorname{Re}(\kappa_{cs}^{L} + \kappa_{cd}^{L}) + 0.043 \operatorname{Im}\kappa_{cs}^{L} - 0.28 \operatorname{Re}(\kappa_{cd}^{R*}\kappa_{cs}^{R}) - \operatorname{Im}(\kappa_{cd}^{R*}\kappa_{cs}^{R}) \le 2.5 \times 10^{-6}$	8
ΔM_d	(73)	$-0.031 \le \text{Re}(\kappa_{ch}^{\text{L}} + \kappa_{cd}^{\text{L}}) + 0.4 \text{Im}\kappa_{ch}^{\text{L}} \le 0.003$	9
$sin(2\beta)$ (mixing)	(77)	$-1.5 \times 10^{-3} \le 0.4 \operatorname{Re}(\kappa_{ch}^{L} + \kappa_{cd}^{L}) - 0.69 \operatorname{Im} \kappa_{ch}^{L} - 0.31 \operatorname{Im} \kappa_{cs}^{L} \le 0.012$	10
ΔM_s	(81)	$-0.014 \le \operatorname{Re}(\kappa_{cs}^{L} + \kappa_{cb}^{L}) + 0.018 \operatorname{Im}(\kappa_{cs}^{L} - \kappa_{cb}^{L}) \le 0.015$	11
$\sin(2\beta_s)$ (mixing)	(85)	$-0.09 \le 0.026 \operatorname{Re}(\kappa_{cb}^{L} + \kappa_{cs}^{L}) + \operatorname{Im}(\kappa_{cb}^{L} - \kappa_{cs}^{L}) \le 7 \times 10^{-4}$	12

New physics in charm?

a loophole in GN?- George Hou

Kaori Fuyuto, Wei-Shu Hou, Masaya Kohda. Phys.Rev.Lett. 114 (2015) 171802

- the PDB mini-review is `more or less the same' every 2 years...
- simple enough to a theorist: the K⁺ experiments cut a section of the kinematic region that the K_L experiments do not. If NP falls in that gap, the GN bound doesn't apply...
- Laurie not satisfied... very long discussion on different acceptance for 2 body mode vs 3 body mode in the two experiments (that's where I can contribute ^G to the collaboration... ^G)
- short story: it took a month to produce the sentence:

It was pointed out in a recent paper that there is a kinematic gap in the Grossman-Nir bound that makes the $K_L \to \pi^0 \nu \overline{\nu}$ mode interesting for new physics searches at the current sensitivity level

a loophole in GN?- George Hou

more on the loophole- George Hou

The decays $K \to \pi \pi \nu \overline{\nu}$ within the standard model

L.S. Littenberg^a, G. Valencia^b

^a Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
 ^b Department of Physics, Iowa State University, Ames, IA 50011, USA

Received 23 April 1996 Editor: H. Georgi

Phys.Lett. B385 (1996) 379-384

Abstract

We study the reactions $K \to \pi \pi \nu \overline{\nu}$ within the minimal standard model. We use isospin symmetry to relate the matrix elements to the form factors measured in $K_{\ell 4}$. We argue that these modes are short distance dominated and can be used for precise determinations of the CKM parameters ρ and η . Depending on the value of the CKM angles we find branching ratios in the following ranges: $B(K_L \to \pi^+ \pi^- \nu \overline{\nu}) = [2-5] \times 10^{-13}$; $B(K_L \to \pi^0 \pi^0 \nu \overline{\nu}) = [1-3] \times 10^{-13}$; $B(K^+ \to \pi^+ \pi^0 \nu \overline{\nu}) = [1-2] \times 10^{-14}$. We also discuss a possible *CP*-odd observable.

Rare kaon decays have long beom recent in the sensitivity to certain the potential to measure the CKM matrix parameters $(-1, \sqrt{2.2\pi} \sin^2 \theta_W) \begin{bmatrix} V_{cs}^* V_{cd} \overline{X}(x_c, y_\ell) + V_{ts}^* V_{td} X(x_t) \end{bmatrix}$ ters ρ and η as well as for their sensitivity to certain the E39/m $(-1)^{-2} \theta_W$ $\begin{bmatrix} V_{cs}^* V_{cd} \overline{X}(x_c, y_\ell) + V_{ts}^* V_{td} X(x_t) \end{bmatrix}$ types of new interactions beyond the minimal standard an upper limit of $\pi^{-1} X_L = \pi^{-1} X_L = \pi^{-1}$

conclusion

- Laurie's contributions to rare kaon decays have been improving our knowledge of SM parameters and `ruling out' new physics for more than 25 years
 - really, pushing them into smaller and smaller regions of allowed parameter space
- We expect them to continue doing so for many years to come