Early SUSY Studies by Laurie

Frank Paige, BNL

Large BNL physics effort for Snowmass 1982 to review ISABELLE, 800 GeV pp collider in RHIC tunnel. Also first discussion of 40 TeV collider ("Desertron").

Laurie led SUSY effort: Detecting Supersymmetric Hadrons[Aronson, Littenberg, Paige, Stumer, Weygand] and Phenomenological Consequences of Supersymmetry[Hinchliffe, Littenberg].

Inspire finds just 346 "supersymmetry" papers before 1982, but SUSY GUT unification and naturalness were being discussed. Growing interest....

Laurie et al. among first to study hadronic production signatures based on multi-body decays with large $\not\!\!\!E_T$.

With R parity SUSY particles produced in pairs with $p_T \sim M$ and decay into (multiple) SM particles plus lightest SUSY particle (LSP), which escapes. Basic idea still used in most current searches. Concentrated on $gg \to \tilde{g}\tilde{g}$ production[Kane,Leveille] with $\tilde{g} \to q\bar{q}\tilde{\gamma}$ decay (phase space with light $\tilde{\gamma}$). Events generated with ISAJET, and particles smeared with toy calorimeter for |y| < 3.

Divided event into two halves \vec{p} and \vec{p}' using major axis of transverse sphericity tensor:

Then (correcting typo)

$$x_E = -\frac{\vec{p}_T \cdot \vec{p}_T'}{|\vec{p}_T|^2}, \quad |\vec{p}_{out}| = \sqrt{|\vec{p}_T'|^2 - x_E^2 |\vec{p}_T|^2}$$

Light jet background peaks at $x_E = 1$ and $\vec{p}_{out} = 0$. Used 20 GeV for top mass[sic].

Distributions of x_E and $|\vec{p}_{out}|$ for signals and background from light, c, b, and t jets at $\sqrt{s} = 800 \text{ GeV}$:

Background after cuts $x_E < 0.5$, $\vec{p}_{out} > 5 \text{ GeV}$ dominated by light (g, u, d, s) jet events rather than $c\bar{c}, b\bar{b}, t\bar{t}$.

Examining individual events produced surprise: main background from g jets with $g \to b\bar{b}, c\bar{c}$ branching and semi-leptonic decay of resulting hadron, $c, b \to \ell \nu X$.

Such events have both real $\not\!\!\!E_T$ and multi-jet structure.

Many details wrong with these early simulations, but importance of $g \to b\bar{b}, c\bar{c}$ was correct. Heavy flavor occurs in $\mathcal{O}(1\%)$ of gluons jets, and no way to force it. Need brute force.

Hence lepton veto [details?] suppresses background (right plot made after Snowmass):

Rate for $\tilde{q}\tilde{q}^*$ small by spin and color factors, $\sigma(\tilde{q}\tilde{q}^*) \sim \frac{1}{50}\sigma(\tilde{g}\tilde{g})$. Laurie suggested $gq \to \tilde{g}\tilde{q}$. Cross sections[Leveille] for $\tilde{g}\tilde{g}$ (left) and $\tilde{g}\tilde{q}$ with $M_{\tilde{g}} = M_{\tilde{q}}$ (right) for $\sqrt{s} = .06, .54, .80, 2, 10, 40$ TeV:

For equal masses $\sigma(\tilde{g}\tilde{q}) \sim \sigma(\tilde{g}\tilde{g})$.

Laurie and HET postdoc also proposed $e^-e^- \rightarrow \tilde{e}^-\tilde{e}^-$ via (Majorana) photino exchange[Keung,Littenberg]. Cross sections for light $\tilde{\gamma}$ (left) and resulting E_e distributions (right):

Given \sqrt{s} , endpoints determine masses. Only have Bhabha and two-photon SM processes.

Became a popular topic at ILC meetings....

Many improvements in SUSY analyses since 1982:

- Better understanding of SUSY models \Rightarrow many signatures.
- New analysis variables to separate signal and background.
- NLO cross sections.
- Better event generation including multileg and/or NLO.
- Full Geant detector simulation for $\gtrsim 10^9$ events.
- Evaluation of systematics with data/MC.

But first effort led by Laurie got a lot right.

Current (MSUGRA) mass limit is $M_{\tilde{g}} = M_{\tilde{q}} > 1.85 \text{ TeV}$, and many channels give $M \gtrsim 0.5 \text{ TeV}$. Searches continue at LHC....

ATLAS SUSY Searches* - 95% CL Lower Limits Status: March 2016

	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7, 8 \text{ T}$	$\sqrt{s} = 13 \text{ TeV}$	Reference	
Inclusive Searches	$\begin{array}{l} \label{eq:msubarray} \begin{array}{l} \mbox{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ (\text{compressed}) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q (\ell \ell \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\ell \text{NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino LSP)} \\ \text{Gravitino LSP} \end{array}$	$\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 2 \ e, \mu \ (\text{off} - Z) \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1\text{-}2 \ \tau + 0\text{-}1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets 0-2 jets 2 jets 2 jets 2 jets 2 jets 2 jets 2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 3.2 20.3 3.2 3.3 20 3.2 20.3 20.3 2	\$\vec{q}\$,\$\vec{z}\$ \$\vec{q}\$ \$\vec	1.85 TeV m m 1.52 TeV m 1.6 TeV m 1.38 TeV m 1.4 TeV m 1.43 TeV m 3.34 TeV m 3 TeV m m	$\begin{array}{l} \widehat{q}_{i} = m(\widehat{g}) \\ \widehat{\chi}_{1}^{(0)} = 0 \text{ GeV, } m(1^{st} \text{ gen. } \widehat{q}) = m(2^{sd} \text{ gen. } \widehat{q}) \\ \widehat{q}_{i}^{(0)} = 10 \text{ GeV} \\ \widehat{\chi}_{1}^{(0)} = 0 \text{ GeV} \\ \widehat{\chi}_{1}^{(0)} = 0 \text{ GeV} \\ \widehat{\chi}_{1}^{(0)} = 350 \text{ GeV, } m(\widetilde{\chi}^{-1}) = 0.5(m(\widetilde{\chi}_{1}^{0}) + m(\widetilde{g})) \\ \widehat{\chi}_{1}^{(0)} = 500 \text{ GeV} \\ \widehat{\chi}_{1}^{(0)} = 500 \text{ GeV} \\ \widehat{\chi}_{1}^{(0)} = 550 \text{ GeV, } cr(\text{NLSP}) < 0.1 \text{ mm, } \mu < 0 \\ \widehat{\chi}_{1}^{(0)} = 550 \text{ GeV, } cr(\text{NLSP}) < 0.1 \text{ mm, } \mu > 0 \\ \text{NLSP}) < 430 \text{ GeV} \\ \text{NLSP} > 430 \text{ GeV} \end{aligned}$	1507.05525 ATLAS-CONF-2015-062 <i>To appear</i> 1503.03290 ATLAS-CONF-2015-062 ATLAS-CONF-2015-076 1501.03555 1602.06194 1407.0603 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518	
3 rd gen. <u>§</u> med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b t \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	1.78 TeV m 1.76 TeV m 1.37 TeV m	$\begin{split} & (\tilde{\chi}_1^0) < 800 \mathrm{GeV} \\ & (\tilde{\chi}_1^0) = 0 \mathrm{GeV} \\ & (\tilde{\chi}_1^0) < 300 \mathrm{GeV} \end{split}$	ATLAS-CONF-2015-067 To appear 1407.0600	
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{X}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{X}_1^+ \\ \tilde{i}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{X}_1^+ \\ \tilde{i}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{X}_1^+ \\ \tilde{i}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{X}_1^0 \text{ or } t \tilde{X}_1^0 \\ \tilde{i}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{X}_1^0 \text{ or } t \tilde{X}_1^0 \\ \tilde{i}_1 \tilde{t}_1 (\text{natural GMSB}) \\ \tilde{i}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \\ \tilde{i}_2 \tilde{t}_1, \tilde{t}_2 \rightarrow \tilde{t}_1 + h \end{array} $	0 2 e, µ (SS) 1-2 e, µ 0-2 e, µ (I) 0 n 2 e, µ (Z) 3 e, µ (Z) 1 e, µ	2 b 0-3 b 1-2 b 0-2 jets/1-2 l nono-jet/c-ta 1 b 1 b 6 jets + 2 b	Yes Yes Yes 4 Yes 9 Yes Yes Yes Yes	3.2 3.2 .7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	b1 840 GeV \bar{b}_1 325-540 GeV 325-540 GeV $\bar{1}_1$ 717-170 GeV 200-500 GeV 745-785 G $\bar{1}_1$ 90-198 GeV 205-715 GeV 745-785 G $\bar{1}_1$ 90-245 GeV 150-600 GeV 745-785 G $\bar{1}_1$ 90-245 GeV 150-600 GeV 745-785 G $\bar{1}_2$ 150-600 GeV 745-785 G	m m ieV m m m m m m m m m m m m	$\begin{array}{l} & \tilde{\chi}_{1}^{0} \!$	ATLAS-CONF-2015-066 1602.09058 1209.2102,1407.0583 08616, ATLAS-CONF-2016-007 1407.0608 1403.5222 1403.5222 1506.08616	
EW direct	$ \begin{split} \tilde{\ell}_{L_{R}} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{N} (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{N} (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\ell}_{N} \tilde{\ell} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\ell}_{N} \tilde{\ell} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{W} \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ GGM (wino NLSP) weak proc \\ GGM (wino NLSP) \\ \end{split} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \end{array}$	0 0 - 0 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3		m m $(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_1^{\pm})$ m m $(\tilde{\chi}_2^{\pm})=m(\tilde{\chi}_1^{0})$	$\begin{array}{l} & \tilde{\chi}^0_1 {)=} 0 \; \text{GeV} \\ & \tilde{\chi}^0_1 {)=} 0 \; \text{GeV}, \; m(\tilde{\ell}, \tilde{\gamma}) {=} 0.5(m(\tilde{\ell}^+_1) + m(\tilde{\ell}^0_1)) \\ & \tilde{\chi}^0_1 {)=} 0 \; \text{GeV}, \; m(\tilde{\tau}, \tilde{\gamma}) {=} 0.5(m(\tilde{\chi}^+_1) + m(\tilde{\chi}^0_1)) \\ & \tilde{\chi}^+_1 {)=} m(\tilde{\chi}^0_2), \; m(\tilde{\chi}^0_1) {=} 0, \; \text{sleptons decoupled} \\ & \tilde{\chi}^0_1 {)=} m(\tilde{\chi}^0_2), \; m(\tilde{\chi}^0_1) {=} 0, \; \text{sleptons decoupled} \\ & \tilde{\chi}^0_1 {)=} m(\tilde{\chi}^0_2), \; m(\tilde{\chi}^0_1) {=} 0, \; \text{sleptons decoupled} \\ & \tilde{\chi}^0_1 {)=} m(\tilde{\chi}^0_2), \; m(\tilde{\chi}^0_1) {=} 0, \; \text{sleptons decoupled} \\ & \tilde{\chi}^0_1 {)=} 0, \; m(\tilde{\chi}, \tilde{\gamma}) {=} 0.5(m(\tilde{\chi}^0_2) + m(\tilde{\chi}^0_1)) \\ & < 1 \; \text{mm} \end{array}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 1405.5086 1507.05493	
Long-lived particles	Direct $\tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{-}$ prod., long-lived $\tilde{\chi}_2^{\dagger}$ Direct $\tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{-}$ prod., long-lived $\tilde{\chi}_2^{-}$ Stable, stopped \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^{0} \rightarrow \tau (\tilde{c}, \tilde{\mu})_{\pm 1}$ GMSB, $\tilde{\chi}_1^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^{0}$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^{0} \rightarrow eev/euv/\mu\muv$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^{0} \rightarrow Z\tilde{G}$	$ \vec{x}_1^+ \begin{array}{c} \text{Disapp. trk} \\ \vec{x}_1^+ & \text{dE/dx trk} \\ 0 \\ \text{dE/dx trk} \\ r(e,\mu) \begin{array}{c} 1-2 \ \mu \\ 2 \ \gamma \\ \text{displ. } ee/e\mu/\mu \\ \text{displ. vtx + jet} \end{array} $	1 jet - 1-5 jets - - μμ - ts -	Yes Yes - - Yes - -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	X [±] 270 GeV X [±] 495 GeV Z 850 GeV Z 537 GeV X ⁰ 537 GeV X ⁰ 1.0 TeV X ⁰ 1.0 TeV	m 1.54 TeV m 10 1 1 7 6	$\begin{split} & (\tilde{\chi}_{1}^{+}) - m(\tilde{\chi}_{1}^{0}) - 160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{+}) = 0.2 \text{ ns} \\ & \tilde{\chi}_{1}^{0}) - m(\tilde{\chi}_{1}^{0}) - 100 \text{ GeV}, 10 \text{ JBs-}\tau(\tilde{\chi}_{1}^{0}) < 15 \text{ ns} \\ & \tilde{\chi}_{1}^{0}) = 100 \text{ GeV}, 10 \text{ JBs-}\tau(\tilde{\chi}_{1}^{0}) < 000 \text{ s} \\ & (\tan \beta < 50 \text{ s}) \\ & (\tan \beta < 50 \text{ s}) \\ & (\tau(\tilde{\chi}_{1}^{0}) < 3 \text{ ns}, \text{SPS8 model} \\ & < c\tau(\tilde{\chi}_{1}^{0}) < 480 \text{ nm}, m(\tilde{\chi}) = 1.3 \text{ TeV} \\ & < c\tau(\tilde{\chi}_{1}^{0}) < 480 \text{ nm}, m(\tilde{\chi}) = 1.1 \text{ TeV} \end{split}$	1310.3675 1506.05332 1310.6584 <i>To appear</i> 1411.6795 1409.5542 1504.05162 1504.05162	
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{\mathbf{v}}_{\tau} + X, \widetilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu \\ Bilinear \ RPV \ CMSSM \\ \widetilde{X}_1^\dagger \widetilde{X}_1^\intercal, \widetilde{X}_1^\dagger \rightarrow WX_1^\intercal, \widetilde{X}_1^0 \rightarrow ee\widetilde{\mathbf{v}}_\mu, e\mu \\ \widetilde{X}_1^\dagger \widetilde{X}_1^\intercal, \widetilde{X}_1^\dagger \rightarrow WX_1^\intercal, \widetilde{X}_1^0 \rightarrow \tau\tau\widetilde{\mathbf{v}}_e, e\tau\mathrm{i} \\ \widetilde{g}_s^\dagger, \widetilde{g} \rightarrow qq\widetilde{g}_1^\dagger, \widetilde{X}_1^0 \rightarrow qqq \\ \widetilde{g}_s^\dagger, \widetilde{g} \rightarrow qq\widetilde{g}_1^\dagger, \widetilde{X}_1^0 \rightarrow bs \\ \widetilde{i}_1 \widetilde{i}_1, \widetilde{i}_1 \rightarrow bs \\ \widetilde{i}_1 \widetilde{i}_1, \widetilde{i}_1 \rightarrow b\ell \end{array} $	$ \begin{array}{cccc} \tau & e\mu, e\tau, \mu\tau \\ & 2 e, \mu (\text{SS}) \\ \tilde{v}_e & 4 e, \mu \\ \tilde{v}_\tau & 3 e, \mu + \tau \\ & 0 \\ & 0 \\ & 2 e, \mu (\text{SS}) \\ & 0 \\ & 2 e, \mu \end{array} $	- 0-3 b - - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	- Yes Yes - - Yes - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{v}_r\$ \$\vec{q}\$, \$\vec{z}\$ \$\vec{q}\$, \$\vec{z}\$ \$\vec{x}_1^+\$ \$\vec{x}_1^+\$ \$\vec{x}_1^+\$ \$\vec{q}\$ \$\vec{q}\$	1.7 TeV 4 1.45 TeV m m B m B B B B	$\begin{split} & \underset{i_{11}=0.11, \mathcal{A}_{132/133/233}=0.07}{[\hat{q}]=m(\hat{g}), c\tau_{LSP}<1 \text{mm}} \\ & \tilde{\chi}^{(1)}_{1}>0.2 \text{km}(\tilde{\chi}^{1}_{1}), \mathcal{A}_{121}\neq 0 \\ & \tilde{\chi}^{(1)}_{1}>0.2 \text{km}(\tilde{\chi}^{1}_{1}), \mathcal{A}_{133}\neq 0 \\ & \tilde{\chi}^{(1)}_{1}=000 \text{GeV} \\ & \tilde{\chi}^{(1)}_{1}=600 \text{GeV} \\ & \tilde{\chi}^{(1)}_{1}=be/\mu)>20\% \end{split}$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.2500 1601.07453 ATLAS-CONF-2015-015	
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV	m	$(\tilde{\chi}_1^0)$ <200 GeV	1501.01325	
*Oni sta	*Only a selection of the available mass limits on new 10^{-1} 1 Mass scale [TeV]									

Some wise person said of SUSY:

Never before in the history of physics have so many done so much for so little.

Laurie made nice contributions to the beginnings of "so much" — and then had the good judgement to go on to other things.