The role of exotic operators in determining the finite-volume spectrum from Lattice QCD and its consequences

Sarah Skinner

August 18, 2023

Carnegie Mellon University

Introduction

Special thanks to my collaborators:

André Walker-Loud Danny Darvish Amy Nicholson Pavlos Vranas Fernando Romero-López Colin Morningstar Ben Hörz Andrew D. Hanlon John Bulava

Some of the results presented in this talk are published in

J. Bulava et al., Elastic nucleon-pion scattering at m_{π} =200 MeV from lattice QCD, *Nuclear Physics B.* 987 (2023) 116105. doi:10.1016/j.nuclphysb.2023.116105.

Standard Model of Elementary Particles

- Electromagnetic
- Weak
- Strong
- (No Gravity)

Standard Model of Elementary Particles

- Electromagnetic
- Weak
- Strong
- (No Gravity)

Quantum Chromodynamics

- Quarks (q)/antiquarks (\overline{q}) are fermions
- there are three color charges (RGB)
- quark confinement: no particles can have color

mesons: qq baryons: qqq tetraquarks: qqqq and more!

- gluons carry the color charge between quarks
- the basic QCD interactions are:

Here's 59 new ones discovered at LHC:

Resonances can occur during scattering and affect the resulting scattering amplitudes

 Δ resonance example:

These resonances are difficult to study because

- Exist for 10⁻²³ seconds or less
- · Extremely difficult to detect directly in experiment
- Form in low energy ranges
- Perturbative theories do not work

Lattice QCD can compute the effects specific to a resonance.

Things that make studying QCD difficult:

- quark confinement
- gluonic self interactions

Things that make a perturbative approach difficult:

- asymptotic freedom
- hot QCD background

Advantages of Lattice QCD:

• lattice QCD is exact and only limited by statistics

Fig 1: Deur, A. The QCD Running Coupling at All Scales and the Connection Between Hadron Masses and $\Lambda_S.$ Few-Body Syst 59, 146 (2018).

Example: **A**(1405) Resonance

- Questions whether the Λ(1405) was actually two nearby resonances (Λ(1405) and Λ(1380))
- Difficult to experimentally discern [CLAS, 2013]
- Recent coupled-channel *K̄*N-πΣ analysis in Lattice QCD distinctly shows two. [Bulava et al, 2023]

Methods

- All Standard Model particles and partons are described using quantum mechanics.
- Particles are steady state solutions to various wave equations.

Path Integral Formulation

Classical mechanics \rightarrow path of least action, $S = \int_{t_a}^{t_b} L dt$

Quantum mechanics ightarrow all paths are possible

• physics is determined by the transition amplitude that gives a probability of getting from point *a* to *b*

$$Z(b,a) = \int_a^b \mathcal{D}x \ e^{iS/\hbar} \xrightarrow{t \to -i\tau} \int_a^b \mathcal{D}x \ e^{-S/\hbar}$$

Ex: Simple harmonic oscillator

Lattice QCD

Computational Framework

- 1. Compute lattice configurations of fields quarks: $\psi^f, \bar{\psi}^f|_{f=u,d,s}$ gluons: \mathcal{A}_{μ}
- 2. Create operators with the make-up and quantum numbers of the particles of interest

$$\pi^+ = \bar{d} u$$

- 3. Construct matrices of two-point correlation functions within the channels of interest $\langle 0|_{\sigma=0} \rangle \langle 0||_{N=1} |\overline{N_{\sigma}}||_{0} \rangle \langle 0||_{N=1} |0\rangle$
 - $\langle 0|\pi\overline{\pi}|0\rangle$, $\langle 0|[N\pi][\overline{N\pi}]|0\rangle$, $\langle 0|\Delta[\overline{N\pi}]|0\rangle$...
- 4. Use GEVP and fitting method to extract the steady state energies of the channel $\langle 0|\pi\overline{\pi}|0\rangle = \sum_{n=0}^{\infty} Ae^{-E_n t}$
- 5. Fit to those energies using Lüscher formalism to calculate phase shifts and matrix elements

Notes on Operator/Correlator Construction

Operator Notes:

- Gluons \rightarrow Stout smearing
- Quarks \rightarrow LapH smearing

Correlator Notes:

- compute correlators including
 - mesons
 - baryons
 - tetraquarks
 - hexaquarks
- stochastic factorization \rightarrow tensor contraction
 - split correlators into sources and sinks
 - multi-hadron correlators can be made out of the same contractions as single hadron correlators
 - + efficient algorithm \rightarrow produce many different correlators

Computational costs of baryon correlators

Baryon sinks and sources can be used for B-B, B-MB, and MB-MB correlators.

Diagrams provided by of Colin Morningstar

Computational costs of tetraquark correlators

Correlation matrix elements in the same channel share the same FV energy levels

$$\langle 0|\mathcal{O}_i(t+t_0)\overline{\mathcal{O}}_j(t_0)|0\rangle = \sum_{n=0}^{\infty} Z_i^{(n)} Z_j^{(n)} e^{-E_n t}$$

Separate out by solving GEVP of $N \times N$ matrix and eigenvalues are

$$\lim_{t\to\infty}\lambda_n(t)\approx b_n e^{-E_n t}$$

Finite-Volume Energy Spectrum

Fitting methods:

- single-exp: Ae-Et
- double-exp: $Ae^{-Et}(1 + Re^{-D^2t})$
- geometric: $Ae^{-Et}/(1-Re^{-Dt})$

Ratio:

$$R(t) = \frac{\lambda_n(t)}{C_1(t)C_2(t)}$$

Phase Shifts/Amplitude Analysis

Connect finite-volume to infinite-volume via Lücsher:

$$\det[\widetilde{K}^{-1}(E_{\rm cm}) - B^{P}(E_{\rm cm})] = 0$$

- truncate higher waves
- \widetilde{K} related to the usual scattering K-matrix
- B^P ('box matrix') finite volume irreps
- only works for 2-2 scattering

Results

 $\mathbf{N}\pi\to\mathbf{N}\pi$

Correlation Matrix Information:

$$a_{N\pi}^{l=1/2}$$

- operators:
 - N
 - **Ν**π
- momenta: $d^2 = 0, 1, 2, 3, 4$

Δ(1232**)**,
$$a_{N\pi}^{I=3/2}$$

- operators:
 - · Δ
 - Nπ
- momenta: $d^2 = 0, 1, 2, 3, 4$

I=1/2 $N\pi$

- Grey bands: noninteracting scattering levels (N, π correlators)
- Green dots: interacting levels ($N\pi$, N correlators)
- Filled green dots: levels used for constraining $a_{N\pi}^{I=1/2}$

I=3/2 Nπ, Δ(1232)

- Grey bands: noninteracting scattering levels (N, π correlators)
- Green dots: interacting levels ($N\pi$, Δ correlators)
- Filled green dots: levels used for calculating $a_{N\pi}^{I=3/2}$

Phase Shifts

Δ Operator

The correlation matrix used for Δ channel included $\langle 0|[N\pi][\overline{N\pi}]|0\rangle$, $\langle 0|\Delta[\overline{N\pi}]|0\rangle$, and $\langle 0|\Delta\overline{\Delta}|0\rangle$

The Δ is not a bound state at this pion mass. Why include it?

Still couples to energy states within the channel \rightarrow increase precision and number of states we can retrieve.

How important was the Δ operator?

△ Operator's Impact

Two coupled-channel scattering channels investigated:

 $K\pi, K\eta \to K\pi, K\eta$

- resonance: κ
- *I* = 1/2
- operators:
 - K
 - **Κ**π
 - $K\eta (\eta = u\bar{u} + d\bar{d})$
 - $K\phi (\phi = s\overline{s})$
 - suss (diquark-antidiquark)
- momentums: $d^2 = 0$

- $K\overline{K}, \pi\eta \to K\overline{K}, \pi\eta$
- resonance: a₀(980)
- *l* = 1
- operators:
 - π
 - KĪ

•
$$\pi\eta (\eta = u\bar{u} + d\bar{d})$$

- $\pi\phi(\phi = s\bar{s})$
- ūudu (diquark-antidiquark)
- momentums: $d^2 = 0$

Meson-Meson Spectrums

 κ channel TQ = $\overline{s}u\overline{s}s$

> w/o TQ 2.75w/ TQ 2.50 $-\bar{K}\pi\pi\pi$ Ŧ $\frac{E_{\rm cm}}{E_{\rm cm}} E_{\rm cm}$ NAR 1.751.50 $K\pi$ $A_{1g}(0)$

a₀ channel TQ = ūudu

Amplitudes

 $K\pi$ – $K\eta$ Spectrum (κ channel)

- Without tetraquark ightarrow no resonance (fit to 5 levels)
- With tetraquark ightarrow resonance at \sim 2.1 m_{K} (fit to 5+TQ levels)

 $K\bar{K}-\pi\eta$ Spectrum (a_0 channel)

- Without tetraquark ightarrow no resonance (fit to 3 levels)
- With tetraquark ightarrow virtual bound state (fit to 2+TQ levels)

Not always: NN scattering with Hexaquarks (HQ)

Deuteron Dineutron

What's the limit?

Final Notes:

- As long as the operator has the quantum numbers of your channel, it can be included
- Not every operator will reveal a new state in the energy regime of interest... but it might.
- Solution? Run low statistics with all operators you can compute to check + prayers

Thanks for listening!

