Using Neutron Stars to Understand Fundamental Physics

Liam Brodie
Washington University in St. Louis

Collaboration with: Mark G. Alford, Alexander Haber, and Ingo Tews
arXiv: 2205.10283, 2302.02989, and 2304.07836
Where are we going? Part 1 of 4

1. Compact stars and the **phase diagram** of nature

2. New models for neutron star **phenomenology**

3. Studying the **lightest** observed compact star

4. Some possible directions of **future work**
Where are we going? Part 1 of 4

1. Compact stars and the **phase diagram** of nature

2. New models for neutron star **phenomenology**

3. Studying the **lightest** observed compact star

4. Some possible directions of **future work**
Fundamental Forces

Gravity Electroweak Strong
Earthly Matter: Water

- Solid
- Liquid
- Gas
- Triple Point
- Critical Point

Diagram showing the changes in state of water under varying pressure and temperature.
T

$300 \text{ Kelvin} \sim 10^{-8} \text{ MeV}$

150 MeV

1 GeV
Neutron Star Mergers

Neutron Stars

Early Universe

Heavy Ion Colliders

300 Kelvin $\sim 10^{-8}$ MeV

150 MeV

300 Kelvin

μ

1 GeV

μ

T
μ

300 Kelvin $\sim 10^{-8}$ MeV

150 MeV

T

Universe

Heavy Ion Colliders

Lattice QCD

Perturbative QCD

Neutron Star Mergers

Neutron Stars
Why else are neutron stars interesting?

All fundamental forces are relevant!

<table>
<thead>
<tr>
<th>Strong</th>
<th>Gravity</th>
<th>Electromagnetism</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizes star against gravity</td>
<td>Second most dense object in the universe (~10^{15} g/cm3)</td>
<td>Strongest magnetic fields in the universe</td>
<td>Isospin equilibration \rightarrow Bulk viscosity</td>
</tr>
<tr>
<td></td>
<td>Gravitational waves from merger</td>
<td>Charge neutrality</td>
<td>Nucleosynthesis</td>
</tr>
</tbody>
</table>

Liam Brodie -- Washington University in St. Louis
https://nineplanets.org/questions/how-big-is-the-sun/
10^{14} times smaller than the Sun
Conclusions: Part 1 of 4

- Neutron stars are...
 - extremely compact
 - used as a “laboratory” to explore some region of the phase diagram of matter
 - cool and dense (μ / T large)

- QCD cannot be solved exactly → phenomenological models needed
Where are we going? Part 2 of 4

1. Compact stars and the **phase diagram** of nature

2. New models for neutron star **phenomenology**

3. Studying the **lightest** observed compact star

4. Some possible directions of **future work**
Why develop new phenomenological models?

• Neutron star mergers probe regions of neutron-rich matter

• Most equations of state are calibrated to isospin-symmetric matter (50% neutrons) and extrapolated to ~90% neutron matter

• Let’s calibrate models to neutron-rich matter!
Summary: Part 2 of 4

• Want **better** microscopic models of nuclear matter that are constrained by:

 • Properties of **neutron matter** (how?)

 • Saturation properties of **isospin-symmetric** nuclear matter

 • Observations of **neutron star** structure
Relativistic Mean-Field Theory (RMFT)

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relativistic theory (e.g., $v_{\text{sound}} < c$) ☑</td>
<td>Not a controlled approximation ☹</td>
</tr>
<tr>
<td>Tractable calculations ☑</td>
<td>Reasonable to about 6 times nuclear saturation density ($\sim 1\text{fm}^{-3}$) ☑ ☹</td>
</tr>
<tr>
<td>Finite temperature and out of equilibrium physics included ☑</td>
<td>No phase transition to deconfined quarks ☹</td>
</tr>
<tr>
<td>Microscopic information available ☑</td>
<td>Coupling constants need to be fit to something ☑</td>
</tr>
</tbody>
</table>

- Liam Brodie -- Washington University in St. Louis
\[\mathcal{L} = \mathcal{L}_N + \mathcal{L}_M + \mathcal{L}_l \]

\[\mathcal{L}_N = \bar{\psi} \left[i \gamma^\mu \partial_\mu - m_N + g_\sigma \langle \sigma \rangle - g_\omega \langle \omega_0 \rangle - \frac{g_\rho}{2} \tau_3 \langle \rho_0 \rangle \right] \psi \]

\[\mathcal{L}_M = - \frac{1}{2} m_\sigma^2 \langle \sigma \rangle^2 - b \frac{M}{3} (g_\sigma \langle \sigma \rangle)^3 - \frac{c}{4} (g_\sigma \langle \sigma \rangle)^4 + \frac{1}{2} m_\omega^2 \langle \omega_0 \rangle^2 \]
\[+ \frac{1}{2} m_\rho^2 \langle \rho_0 \rangle^2 + \Lambda (g_\rho \langle \omega_0 \rangle \langle \rho_0 \rangle)^2 \]

\[\mathcal{L}_l = \bar{\psi}_e (i \gamma^\mu \partial_\mu - m_e) \psi_e \]
\[\mathcal{L} = \mathcal{L}_N + \mathcal{L}_M + \mathcal{L}_l \]

\[\mathcal{L}_N = \bar{\psi} \left[i \gamma^\mu \partial_\mu - m_N + g_\sigma \langle \sigma \rangle - g_\omega \langle \omega_0 \rangle - \frac{g_\rho}{2} \tau_3 \langle \rho_{03} \rangle \right] \psi \]

\[\mathcal{L}_M = -\frac{1}{2} m_\sigma^2 \langle \sigma \rangle^2 - \frac{b}{3} M (g_\sigma \langle \sigma \rangle)^3 - \frac{c}{4} (g_\sigma \langle \sigma \rangle)^4 + \frac{1}{2} m_\omega^2 \langle \omega_0 \rangle^2 \]

\[+ \frac{1}{2} m_\rho^2 \langle \rho_{03} \rangle^2 + \Delta (g_\rho \langle \omega_0 \rangle \langle \rho_{03} \rangle)^2 \]

\[\mathcal{L}_l = \bar{\psi}_e (i \gamma^\mu \partial_\mu - m_e) \psi_e \]
Nuclear Physics Data to Constrain Our Model

Fit relativistic mean-field theory to **symmetric** and **neutron** matter

- **Isospin-Symmetric Matter**
 - Binding energy
 - Pressure
 - Incompressibility

- **Neutron Matter**
 → Chiral Effective Field Theory
Chiral Effective Field Theory (ChiEFT)

- Based on the symmetries of QCD with nucleon and pion degrees of freedom
- Controlled approximation to QCD valid at low densities
- Theory fitted to data from scattering experiments

Commonly used relativistic mean-field theories are inconsistent with ChiEFT for neutron matter
Uncertainty in Chiral Effective Field Theory

ChiEFT data from Tews et al. (arXiv:1801.01923)
Uncertainty in Chiral Effective Field Theory

ChiEFT data from Tews et al. (arXiv:1801.01923)
Uncertainty in Chiral Effective Field Theory

ChiEFT data from Tews et al. (arXiv:1801.01923)
Simultaneous Nuclear Physics Constraints

Binding Energy [MeV] vs Baryon Density [n_0]

- ChiEFT Upper
- RMF fit
- ChiEFT Lower
Simultaneous Nuclear Physics Constraints

Binding Energy [MeV] vs Baryon Density [n_0]

ChiEFT Upper
ChiEFT Lower
RMF fit
Symmetric Nuclear Matter

Liam Brodie -- Washington University in St. Louis
How can neutron stars constrain our model?

Relativistic Mean-Field Theory \rightarrow \text{Equation of State} \rightarrow \text{TOV} \rightarrow \text{Mass-Radius Curve}

Measurements of Neutron Star Mass and Radius
Equation of State

Observations

\(\frac{p(\varepsilon)}{\varepsilon_s} \)

maximum mass

small range of radii

\(M(R) \)
Developed QMC-RMF1,2,3,4: models of nuclear matter that are constrained by isospin-symmetric and neutron matter and by observations of neutron star structure

Ready for use in neutron star merger simulations: compose.obspm.fr/eos/297

• Tabulated over a range of temperatures, densities, and proton fractions

• Provides an equation of state \((p,\varepsilon,s,\mu,\ldots)\)

• Provides particle dispersion relations and effective masses
Where are we going? Part 3 of 4

1. Compact stars and the **phase diagram** of nature

2. New models for neutron star **phenomenology**

3. Studying the **lightest** observed compact star

4. Some possible directions of **future work**
A strangely light neutron star within a supernova remnant

\[M = 0.77^{+0.20}_{-0.17} \, M_\odot \]

\[R = 10.4^{+0.86}_{-0.78} \, \text{km} \]
Studying the Lightest Compact Star

\[M = 0.77^{+0.20}_{-0.17} \, M_\odot \quad R = 10.4^{+0.86}_{-0.78} \, \text{km} \]

• Caution: Parameter estimation & formation mechanism

• What is the composition of this star?
 • Quark star
 • Neutron star
 • Hybrid star
 • Etc...

Liam Brodie -- Washington University in St. Louis
Nuclear models only reach 2σ consistency with the HESS J1731-347 measurement

- Possibly because:
 - Measurement uncertainties underestimated
 - **Additional** nuclear physics not included in the family of RMFs used
 - Nucleons are not the only relevant degree of freedom
The graphs depict the binding energy per nucleon (E_{bind}) as a function of baryon density (n_0) for different forms of matter. The graph on the left shows the binding energy for pure neutron matter and symmetric nuclear matter, with the QMC-SOFT line highlighted. The graph on the right demonstrates the relationship between mass and radius for different compact objects, including PSR J0740+6620 and J1731-347, with the QMC-SOFT line superimposed.
Hybrid Equation of State

Alford, Han, Prakash 1302.4732

Energy Density

$\varepsilon_{0,\text{QM}}$ $\varepsilon_{\text{trans}}$ $\Delta \varepsilon$

Quark Matter

Slope = c_{QM}^{-2}

Nuclear Matter

Pressure p_{trans}
\[c_{QM}^2 = 0.48 \]

\[n_{tr} \in \{2n_0, 2.4n_0\} \]

\[\frac{\Delta \epsilon}{\epsilon} \in \{0.004, 0.151\} \]
Conclusions: Part 3 of 4

If HESS J1731-347 measurement is credible

• **Most** compact stars could be **hybrid stars** with a nuclear matter “mantle” and a quark matter “core”

• Nuclear models **do not** have to be as “stiff”

• Future observations could help **constrain** low-energy nuclear theory
Parts 1-3 Conclusions

• Neutron stars can be used as a “laboratory” to explore part of the phase diagram of matter

• Developed new models for neutron stars constrained by nuclear physics and astrophysics

• Most compact stars could be hybrid stars with a nuclear matter “mantle” and a quark matter “core”
Where are we going? Part 4 of 4

1. Compact stars and the phase diagram of nature

2. New models for neutron star phenomenology

3. Studying the lightest observed compact star

4. Some possible directions of future work
Future work

• Weak interaction transport properties
 • Urca processes with arbitrary neutrino distribution
 • Strangeness equilibration in quark matter at merger temperatures

• Interested in the rest of the phase diagram of matter
 • Is there is a critical endpoint?
 • Is chiral symmetry restored at deconfinement?
 • Other phases of matter?