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Side A: PID likelihoods
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dE/dx: where does it matter the most

For illustration only. Do 
not use this plot to get 
some serious number

dE/dx is used also here, 
but the separation power is not 

 excellent
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ARICH

For illustration only. Do 
not use this plot to get 
some serious number
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TOP

For illustration only. Do 
not use this plot to get 
some serious number
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ECL

For illustration only. Do 
not use this plot to get 
some serious number

The ECL dominates the 
electron identification
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KLM

For illustration only. Do 
not use this plot to get 
some serious number

The KLM dominates the 
muon identification
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Combining all the information

How can we combine in a coherent way all the signals from the sub-detectors?

1) Each detector fits the distribution of its hits with six PDFs (one per species)
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Toy Likelihood with an ARICH-like device
Detector level



10

Toy Likelihood with an ARICH-like device
Detector level Reconstruction level



11

Toy Likelihood with an ARICH-like device
Reconstruction level

Compare the observed distro with 
the expected one for each particle 
type

pi, K and p here. Which is which?
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Toy Likelihood with an ARICH-like device
Reconstruction level

Compare the observed distro with 
the expected one for each particle 
type

pi, K and p here. Which is which?

LL(p) = -165
LL(K) = -28
LL(p) = -1805



13

Fun with likelihoods

Will a kaon always have a high kaon LL?
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Fun with likelihoods

Will a kaon always have a high kaon LL?

LL(K) = -6 LL(K) = -135
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Getting a PID value: DeltaLL

How do we compare different hypotheses?

→ The better the mass hypothesis fits the data, the larger the likelihood is.

→ The most basic comparison is the Log-likelihood difference

→ DLL tells you which one of two hypotheses is the most likely
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DeltaLL examples

DLL(K,p) = 4.6 DLL(K,p) = 590
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Combining all the information

How can we combine in a coherent way all the signals from the sub-detectors?

1) Each detector fits the distribution of its hits with six PDFs (one per species)

2) The outcome of each fit is quantified in a (Log)-likelihood value
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Combining all the information

How can we combine in a coherent way all the signals from the sub-detectors?

1) Each detector fits the distribution of its hits with six PDFs (one per species)

2) The outcome of each fit is quantified in a (Log)-likelihood value

3) The for each mass hypothesis, we sum the LogLikelihoods of the sub-detectors to
    construct a single particle likelihood
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Weighting the detector info

Imagine two detectors D1 and D2
→ D1 can separate p and m
→ D2 cannot

Should we weight the subdetectors in the combined LL?
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Weighting the detector info

Should we weight the subdetectors in the combined LL?

Imagine two detectors D1 and D2
→ D1 can separate p and m
→ D2 cannot 

Question: Does D2 contribute?
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Weighting the detector info

Should we weight the subdetectors in the combined LL?

NO, Likelihoods are “self-weighting” 



Side B: PID probabilities
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From likelihoods to probabilities

DLL  is a powerful tool to understand a detector’s performance

However, how do you quantify the “PID level” of a particle in an 
understandable way?
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From likelihoods to probabilities

DLL  is a powerful tool to understand a detector’s performance

However, how do you quantify the “PID level” of a particle in an 
understandable way?

PID is inherently a Bayesian problem.
 
I observe a “kaon-like” signal, and want to know what’s the probability for that 
signal to be really generated by a kaon
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From likelihoods to probabilities

A very simple example: a magic universe where only pions and kaons exist.

Let’s assume that our data sample 
contains 20% kaons and 80% pions 
(how do we know it? )
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From likelihoods to probabilities

A very simple example: a magic universe where only pions and kaons exist.

Let’s assume that our data sample 
contains 20% kaons and 80% pions 
(how do we know it? )

The detector has a certain 
probability of assigning pion or kaon 
ID, depending on the original 
particle
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From likelihoods to probabilities

A very simple example: a magic universe where only pions and kaons exist.

We observe a “kaon-like” signal.
What’s the probability for that 
particle to be a kaon?
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From likelihoods to probabilities

A very simple example: a magic universe where only pions and kaons exist.

We observe a “kaon-like” signal.
What’s the probability for that 
particle to be a kaon?

Posterior probability

Prior probability
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From likelihoods to probabilities

The likelihood value is actually a proxy (i.e. is proportional) exactly to the 
conditional probability!

Belle II default PID variables are posterior probabilities
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Binary PID

DLL(K,p) = 568
P(K, p) = 1

?

DLL(K,p) = 590
P(K,p) = 1
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Binary PID

DLL(K,p) = 568
P(K, p) = 1

DLL(K,p) = 590
P(K,p) = 1
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Delta LL limitations

DLL(K,p) = 2375
P(K, p) = 1

DLL(K,p) = 612
P(K, p) = 1

What is going on here?
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“Global” and “Binary” PID

“Binary PID” is a special case of the “global PID” 

Can you see what the only difference is?
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Why priors matter

Likelihood values are meaningless without a reference

PID probabilities are meaningless without a prior scheme



Bonus track: using PID
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PID variables in basf2

Basic variables:

Can you find the documentation yourself?

electronID, muonID, pionID, kaonID, protonID, deuteronID

pidPairChargedBDTScore(pdgCodeHyp, pdgCodeTest)
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PID variables in basf2

Basic variables:

“Expert” variables

pidLogLikelihoodValueExpert(pdgCode, detectorList)

pidDeltaLogLikelihoodValueExpert(pdgCode1, pdgCode2, detectorList)

pidPairProbabilityExpert(pdgCodeHyp, pdgCodeTest, detectorList)

pidProbabilityExpert(pdgCodeHyp, detectorList)

electronID, muonID, pionID, kaonID, protonID, deuteronID

pidPairChargedBDTScore(pdgCodeHyp, pdgCodeTest)
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Performances

Few metrics are used to characterize the performances of a PID detector

→ Efficiency: ability to correctly assign the ID
    e(K) = N(K identified as K)/N(real K)
    Equal, by definition, to the “probability of a kaon to be called kaon”
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Performances

Few metrics are used to characterize the performances of a PID detector

→ Efficiency: ability to correctly assign the ID
    e(K) = N(K identified as K)/N(real K)
    Equal, by definition, to the “probability of a kaon to be called kaon”

→ Mis-ID probability: ability not to assign the incorrect ID
    Mis-ID(K) = N(non-K identified as K)/N(non K)
    Equal, by definition, to the “probability for a non-kaon to be called kaon”

→ Fake rate: fraction of particles with the wrong ID
    F(K) = N(non-K identified as K)/N(identified as K)
    Equal, by definition, to the “fraction of non-kaons in my collection of kaons”
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Fake rates VS mis-ID probability

The fake rate is (to a certain extent) a Bayesian idea

Given that I have something that looks like a kaon, what are the chances for 
this to really be a kaon and not a pion?

Let’s assume:
Mis-ID probability p → K ~ 1%
Kaon efficiency ~ 100%
2% of kaons and 98% pions in the data
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Fake rates VS mis-ID probability

The fake rate is (to a certain extent) a Bayesian idea

Given that I have something that looks like a kaon, what are the chances for 
this to really be a kaon and not a pion?

Let’s assume:
Mis-ID probability p → K ~ 1%
Kaon efficiency ~ 100%
2% of kaons and 98% pions in the data

Bayes theorem: 
P(my “kaon” is kaon) = 1 x 0.02 / ( 1 x 0.02 + 0.01 x 0.98) ~ 67%

Fake rate = 33% 

ì
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One slide summary

1) PID variables are probabilities
→ Bayes theorem with Likelihoods are conditional probabilities
→ Priors are constant (for now)

2) Don’t confuse fake rate with mis-ID probability

3) Things will improve in future
→ Priors will be implemented
→ ML to properly deal with high order correlations
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