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Examples detector optimization at EIC

ECCE Tracker Plane and Disk
proportions

Objectives: KF efficiency, 6 and
|p| resolutions

Multi-Objective Optimization using
NSGA-IIl (see arXiv:2205.09185)

and Bayesian MOO (see

talk by Karthik Suresh from last year)

%

dual-radiator RICH
Objective: FOM over Noy.. at p = 14 and
60 GeV/c

3D Downstream View 3D Upstream view

Spherical Mirror
Single-Objective Optimization using BO
(see 2020 JINST 15 P05009)
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https://arxiv.org/abs/2205.09185
https://indico.bnl.gov/event/16586/contributions/68730/
https://arxiv.org/abs/1911.05797

- SciGlass projective calorimeter
O m

Tower dimensions and placement implemented based on mechanical design: pyramidal
towers, angles tweaked by hand

s N Nl
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SciGlass lengths of 45.5 and 40 cm (= 16.3 and 14.3 X))

— originally chosen for a calorimeter that fits inside the BaBar solenoid (Detector )

Main purpose: measurement of e*/y energy, e*/n* and (7° — yy)/y discrimination
%Eggéﬁbcfky




Parametrization

» 7 shapes of cells — “families”

>

» Families are stacked from n = 0 in —% and +Z directions

e 5 integer numbers (0-9) of towers for negative HE NN

* 7 integer numbers (0-9) of towers for positive HEENEEN
» Each shape is a "G4Trap”

e azimuthal flaring and at-face flaring angles can be calculated to preserve fixed gaps
e 7 floating point (0.0-2.0 degrees) longitudinal flaring angles determine n projectivity

>

» Altogether 19 parameters considered
» DD4hep allows detector configuration from “compact” XML files
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Optimization objectives

» Single particle simulations: e™, 77 (p1 = 2 GeV)

» Key metrics:

e Energy resolution
* Charged pion rejection factor
* Neutral pion to photon discrimination (not considered yet — relies on ML)
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5 Multi-objective Optimization using Genetic Algorithms

B 1 Initialize population (100 samples x 19 parameters — RNG)

2 Evaluate objective functions {f;} for each specimen in the population
Pick them so that the minimized f; < 0, then for invalid geometries use dominated

fi = Noverlaps
3 Survival, Selection (specified by NSGA-II)
4 Crossover, Mutation (exchange and RNG re-init of individual parameters)
5 Repair (optional)
6 Goto 2
Easy to program with pymoo, works out of the box.
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Constraints and dimensional reduction

» Problem: objective evaluation O(minutes), overlap evaluation O(seconds). O
Any way to precompute later for a given geometry?

» Solution: explore and learn the manifold of valid parameter combinations

* Could use GA for exploration, but MCMC has nice implementations of walkers (we
want a “stretch” move)

—oo, if parameter set doesn’t pass overlap check

log(P) = .
Zrightmost tower — Zleftmost tower/ (1 €m), otherwise

Run default implementation from emcee with 10,000 walkers for a 1000 iterations
¢ Almost linear constraints = PCA was used to obtain linear transformation and limits
(set at 30).

Value

(Neppies = 1)

.
.
»

.

.

*

.

*

.

Explained variance = 2/(Nsanp:

| W

00 25 s0 75 100 125 150 175

0 50 100 150 200 250 300 350 00 125 180 s B 10 i
SVD component i Parameter Parameter

log(P) SVD component

i H H 1 niversity o
2 dimensions effectively removed! gy e



- Constraints and dimensional reduction B

O S . . ;
- » Problem: objective evaluation O(minutes), overlap evaluation O(seconds). L
Any way to precompute later for a given geometry?

» Solution: explore and learn the manifold of valid parameter combinations
* Could use GA for exploration, but MCMC has nice implementations of walkers (we

want a “stretch” move)
log(P) [ —oo, if parameter set doesn’t pass overlap check
Zrightmost tower — Zleftmost tower/ (1 €M), otherwise

Run default implementation from emcee with 10,000 walkers for a 1000 iterations
e Almost linear constraints = PCA was used to obtain linear transformation and limits

(set at 30).

EdepA/pthrown

Without manifold

With manifold Nice improvement demonstrated for NSGA!
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Generation * 100 + Sample index -% Universityof
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- Bayesian Optimization

Gaussian Process allows for probabilistic
surogate modeling

Expected Improvement (El) acquisition
function:

EI(x) = E[max(f(x) — foest known: 9)]

[iter0}: scale=12¢-01, best=-1708 [iter1}: scale=1.1¢-01, best=-1907 [iter2): scale=1.02-01, best=-2.090

lllustration using a toy function:

log(x), if x >0
FO=1 /i, ifx<0

Reporting fake dominated values may
not an option - could spoil the fit!

In the MOO case, Expected
Improvement is commonly taken for a
HyperVolume (qEHVI).
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5 Cross Validation
7 Important step: cross validation for the surrogate model for a given problem

Pion rejection factor (at 85% efficiency) Number of overlaps
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» Number of overlaps was originally split into a separate “OutcomeConstraint”
Didn’t work well — killed optimization progress.

» Objective value of 0 with an uncertainty is reported for overlapping configurations

» The GP hardcoded for SAASBOO in Ax gives a decent CV

» gNEHVI is effective at picking impro%jmgipoints
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Software stack

pymoo

Jor

GPyTorch

.

BoTorch

X
Ax

r‘ & GEeanT4 mlfl ow-

Dask Distributed .

DD4hep &
r‘ Joblib

joblib.Memory

dask-jobqueue
epic_arches geometry
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emcee
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Pion rejection factor (at 85% efficiency)

e design samples

- Some results (GA)
g 2-objective MOO (de-facto single objective)

NSGA-II (100 samples/generation)

Performance optimization for e ~ With poun =2 GeV

Nominal design

02 0.4 06 08
Average (Eqep. /Prnvown)

Analysis in full benchmark
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Some results (BO)

2-objective MOO (de-facto single objective)
SAASBO gNEHVI (3 samples/generation)

Pion rejection factor (at 85% efficiency)

X

Performance optimization for e~ With pinroun = 2 GeV/

design samples
Nominal design .

et vt el
oa os os o7 os
Average (Egep. [Pthrown)

/Generationst rategy(
steps = [

GenerationStep(
model=Models.S0BOL,
num_trials=1000,
max_parallelism=1000,

GenerationStep(
model=Models. FULLYBAYESIANMOO,
num_trials=1000,
max_parallelism=3,
model_kwargs=dict(
num_samples=256,
warmup_steps=512,
gp_kernel="rbf",
torch_device=torch.device("cuda"),
- 25 torch_dtype=torch.double,
verbose=False,

Generation

Without manifold

Pion rejection

200 400 600 800 1000

Sample index

Would be interesting to fit solutions from NSGA and see if those can be improved with BO.
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| Summary o
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» Several working approaches specific to optimization of particle detectors have been
demonstrated

» Practical application of SciGlass (e.g. at EIC Detector Il) can benefit from ML
optimization
¢ Going beyond pure geometrical optimization

e Proper tooling to scale production and analysis of large optimization workflows

e Are there any issues with objectives involving ML? (for PID)
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