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Examples detector optimization at EIC
ECCE Tracker Plane and Disk
proportions
Objectives: KF efficiency, 𝜃 and
| ⃗𝑝| resolutions
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Figure 5: Tracking and PID system in the non-projective (left) and the ongoing R&D projective (right) designs: the two figures show the different geometry
and parametrization of the ECCE non-projective design (left) and of the ongoing R&D projective design to optimize the support structure (right). Labels in red
indicate the sub-detector systems that were optimized, while the labels in blue are the sub-detector systems that were kept fixed due to geometrical constraint. The
non-projective geometry (left) is a result of an optimization on the inner tracker layers (labeled in red) while keeping the support structure fixed, The angle made by
the support structure to the IP is fixed at about 36.5◦. The projective geometry (right) is the result of an ongoing project R&D to reduce the impact of readout and
services on tracking resolution.

the implementation of the optimization pipelines and utilized
computing resources.

4. Analysis Workflow

The optimization of the ECCE-tracking system [3, 20] has
been characterized by two main phases during which the sub-
detectors composing the tracker evolved into more advanced
renditions.

Phase I optimization. 4 The Geant4 implementation of the
detectors were at first simplified, e.g., detector modules were
mounted on a simplified conical support structure made of alu-
minum. The optimization pipelines consisted of symmetric ar-
rangement of detectors in the electron-going and hadron-going
directions (5 disks on each side). The DIRC detector for PID
in the barrel region was modelled with a simple geometry made
by a cylinder and conical mirrors. AC-LGAD-based TOF de-
tectors were modelled as simplified silicon disks at first; the
outer trackers had more fine-grained simulations implemented,
with realistic support structures and services implemented. The
optimization pipelines included various combinations of detec-
tor technologies for the inner trackers. At the end of this phase,
a decision on the choice of the barrel technology and the disk
technologies was made using the AI results.

Phase II optimization. 5 These pipelines had a more realistic
implementation of the support structure incorporating cabling,
support carbon fiber, cooling system, etc. More detailed sim-
ulation of the PID Detectors (e.g., DIRC bars and dRICH sub-
systems) were integrated as well as fine-grained simulations of

4Phase I corresponds to a timeline between June-2021 to Sept-2021. Pre-
liminary studies done between March-2021 to May-2021 are not reported here.

5Phase II corresponds to optimization pipelines that run from Sept-2021 to
Nov-2021.

TTL layers (CTTL, ETTL, FTTL) previously simulated as sim-
ple silicon layers modules. More stringent engineering con-
straints were considered such as the sensor size for MAPS de-
tector (ITS3). This phase also considered an asymmetric ar-
rangement of the detectors in the endcap regions, with a maxi-
mum of 4 EST disks in the electron-going end-cap and 5 FST
disks in the hadron-going endcap: due to this asymmetric spa-
tial arrangement, the angle subtended by detectors in the two
endcap regions could be varied. This eventually developed into
the idea of a projective geometry in a pipeline that character-
izes an ongoing R&D project for optimizing the design of the
support structure.

A detailed description of the most recent parametrization
used for the detector proposal can be found in Appendix A,
along with the parametrization used in an ongoing R&D project
to optimize the support structure of the inner tracker.

Fig. 5 shows a comparison of the ECCE reference non-
projective design and the projective design from the ongoing
R&D, both of which resulted from the AI-assisted procedure
described in this paper.

4.1. Encoding of Design Criteria

Design criteria need to be encoded to steer the design dur-
ing the optimization process. For each design point we need to
compute the corresponding objectives fm, namely the momen-
tum resolution, angular resolution, and Kalman filter efficiency.

We will refer in the following only to the more recent Phase
II optimization.6 Phase II has been characterized by two types
of optimization pipelines: the first used a parametrization of
the inner tracker during the optimization process and led to
the ECCE tracker non-projective design; the second branched
off the first as an independent R&D effort that included the

6Similar considerations apply also for Phase I optimization.
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Multi-Objective Optimization using
NSGA-III (see arXiv:2205.09185)
and Bayesian MOO (see
talk by Karthik Suresh from last year)

dual-radiator RICH
Objective: FOM over 𝑁𝜎𝐾𝜋 at 𝑝 = 14 and
60 GeV/c
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Figure 2. Geant4 model of the dRICH. Top: full 3D downstream (left) and upstream (right) views; bottom:
one of the identical 6 sectors, side (left) and front (right) views. The aerogel radiator (disc radius 120 cm,
thickness up to 6 cm) and acrylic filter (2mm thick) are at the detector entrance (colored dark-red and sky
blue). The mirrors sectors are close to the exit side, in dark-gray (reflective side) and light-gray (back side).
The photon detectors are out of the scattered particle acceptance in orange (sensitive side) and dark-orange
(back side) and cover ∼ 4500 cm2 area/sector. In the upper/right drawing, a single simulated event (10GeV/c
pion) is represented: the charged particle track is in black while the tracks of the generated optical photons
are in blue; the photon reflection and end points in green and red respectively; the large aerogel ring is split
into two detectors of adjacent sectors, while the small gas ring is concentrated on one single sensor.

the simulation is that of the JLab detector design at 3T central field.3 The optical sensor area in
such a mirror-focusing design can be rather compact, and can be placed in the shadow of a barrel
calorimeter, outside of the radiator acceptance. The pixel size of the photosensors has been assumed

3The solenoid is still under development and its central magnetic field is now expected to be smaller than 3 T. This
value is, therefore, conservative for the dRICH simulation results. The impact of the magnetic field is confined to the gas
angular resolution at large polar angle (right plot of figure 3). Our proposed optimization method and its applicability do
not depend on the strength of the magnetic field.

– 4 –

Single-Objective Optimization using BO
(see 2020 JINST 15 P05009)
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https://arxiv.org/abs/2205.09185
https://indico.bnl.gov/event/16586/contributions/68730/
https://arxiv.org/abs/1911.05797


SciGlass projective calorimeter
Tower dimensions and placement implemented based on mechanical design: pyramidal
towers, angles tweaked by hand

SciGlass lengths of 45.5 and 40 cm (≈ 16.3 and 14.3 𝑋0)
– originally chosen for a calorimeter that fits inside the BaBar solenoid (Detector I)
Main purpose: measurement of 𝑒±/𝛾 energy, 𝑒±/𝜋± and (𝜋0 → 𝛾𝛾)/𝛾 discrimination
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Parametrization

αi

α(i-1)
γi

βi

β(i-1)

r=r0

Δzi

» 7 shapes of cells – “families”
» Families are stacked from 𝜂 = 0 in −𝑧 and +𝑧 directions

• 5 integer numbers (0-9) of towers for negative �����
• 7 integer numbers (0-9) of towers for positive �������

» Each shape is a “G4Trap”
• azimuthal flaring and at-face flaring angles can be calculated to preserve fixed gaps
• 7 floating point (0.0-2.0 degrees) longitudinal flaring angles determine 𝜂 projectivity

» Altogether 19 parameters considered
» DD4hep allows detector configuration from “compact” XML files
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Optimization objectives
» Single particle simulations: 𝑒−, 𝜋− (𝑝T = 2 GeV)
» Key metrics:

• Energy resolution
• Charged pion rejection factor
• Neutral pion to photon discrimination (not considered yet – relies on ML)

0.0 0.2 0.4 0.6 0.8 1.0
(Edep. /|pthrown|)

2000

4000

6000

8000

10000

Nu
m

be
r o

f e
ve

nt
s

FWHM

|pthrown| = 2.0 GeV
e  (| | = 1.0)
Crystal Ball

0.0 0.2 0.4 0.6 0.8 1.0
(E3imes3 clust. /|pthrown|)

100

101

102

103

104

105

106

Nu
m

be
r o

f e
ve

nt
s

|pthrown| = 5.0 GeV
e  (| | = 0.01)

 (| | = 0.01)
e  (| | = 0.5)

 (| | = 0.5)
e  (| | = 1.0)

 (| | = 1.0)

20 40 60 80 100
Electron efficiency, %

100

101

102

103

104

 re
je

ct
io

n 
fa

ct
or

|pthrown| = 2.0 GeV

| | = 0.01
| | = 0.5
| | = 1.0

100 101

Momentum [GeV]
10 4

10 3

10 2

10 1

100

101

102

103

104

105

106

/e
 ra

tio

Raw Contamination
+EMCal supression
+Total E pz cut
+DIRC supression

1.0 < < 0.0
E/p classifier (no shower profiling)
ML classifier

100 101

Momentum [GeV]

Pmin 10x100 GeV

0.0 < < +1.0

90% purity

5



Multi-objective Optimization using Genetic Algorithms
1 Initialize population (100 samples × 19 parameters ← RNG)
2 Evaluate objective functions {𝑓𝑖} for each specimen in the population

Pick them so that the minimized 𝑓𝑖 ≤ 0, then for invalid geometries use dominated
𝑓𝑖 ≡ 𝑁overlaps

3 Survival, Selection (specified by NSGA-II)
4 Crossover, Mutation (exchange and RNG re-init of individual parameters)
5 Repair (optional)
6 Goto 2

Easy to program with pymoo, works out of the box.
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Constraints and dimensional reduction
» Problem: objective evaluation 𝒪(minutes), overlap evaluation 𝒪(seconds).

Any way to precompute later for a given geometry?
» Solution: explore and learn the manifold of valid parameter combinations

• Could use GA for exploration, but MCMC has nice implementations of walkers (we
want a “stretch” move)

log(𝑃) = {
−∞, if parameter set doesn’t pass overlap check
𝑧rightmost tower − 𝑧leftmost tower/(1 cm), otherwise

Run default implementation from emcee with 10, 000 walkers for ≈ 1000 iterations
• Almost linear constraints ⇒ PCA was used to obtain linear transformation and limits
(set at 3𝜎).
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Constraints and dimensional reduction
» Problem: objective evaluation 𝒪(minutes), overlap evaluation 𝒪(seconds).

Any way to precompute later for a given geometry?
» Solution: explore and learn the manifold of valid parameter combinations

• Could use GA for exploration, but MCMC has nice implementations of walkers (we
want a “stretch” move)

log(𝑃) = {
−∞, if parameter set doesn’t pass overlap check
𝑧rightmost tower − 𝑧leftmost tower/(1 cm), otherwise

Run default implementation from emcee with 10, 000 walkers for ≈ 1000 iterations
• Almost linear constraints ⇒ PCA was used to obtain linear transformation and limits
(set at 3𝜎).

1.26.0 Experiments Models GitHub Docs
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Bayesian Optimization
Gaussian Process allows for probabilistic
surogate modeling
Expected Improvement (EI) acquisition
function:
EI(𝑥) = 𝔼[max(𝑓(𝑥) − 𝑓best known, 0)]

Illustration using a toy function:

𝑓(𝑥) = {
log(𝑥), if 𝑥 > 0
√|𝑥|, if 𝑥 < 0

Reporting fake dominated values may
not an option – could spoil the fit!

In the MOO case, Expected
Improvement is commonly taken for a
HyperVolume (qEHVI).
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Cross Validation
Important step: cross validation for the surrogate model for a given problem

0.6 0.4 0.2 0.0 0.2
Real outcome

0.8

0.6

0.4

0.2

0.0

GP
 p

re
di

ct
io

n
Fraction below 1 FWHM from mean

Initial samples 3-fold CV (Sobol)
Suggested candidates (qNEHVI)

6 4 2 0 2 4 6
Real outcome

8

6

4

2

0

2

GP
 p

re
di

ct
io

n

Pion rejection factor (at 85% efficiency)
Initial samples 3-fold CV (Sobol)
Suggested candidates (qNEHVI)

0 10 20 30 40 50 60 70
Real outcome

0

10

20

30

40

50

60

70

GP
 p

re
di

ct
io

n

Number of overlaps
Initial samples 3-fold CV (Sobol)
Suggested candidates (qNEHVI)

» Number of overlaps was originally split into a separate “OutcomeConstraint”
Didn’t work well – killed optimization progress.

» Objective value of 0 with an uncertainty is reported for overlapping configurations
» The GP hardcoded for SAASBOO in Ax gives a decent CV
» qNEHVI is effective at picking improving points
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Software stack

GPyTorch

BoTorch

Ax

or
Dask.Distributed

dask-jobqueue

DD4hep

epic_arches geometry

joblib.Memory

emcee
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Some results (GA)
2-objective MOO (de-facto single objective)
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Some results (BO)
2-objective MOO (de-facto single objective)
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1.26.0 Experiments Models GitHub Docs
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Would be interesting to fit solutions from NSGA and see if those can be improved with BO.
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Summary

» Several working approaches specific to optimization of particle detectors have been
demonstrated

» Practical application of SciGlass (e.g. at EIC Detector II) can benefit from ML
optimization
• Going beyond pure geometrical optimization

• Proper tooling to scale production and analysis of large optimization workflows

• Are there any issues with objectives involving ML? (for PID)
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