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Goal:  
Best experimental design suited for the 

Best detector reconstruction
Fernando Torales Acosta, Benjamin Nachman, 

Miguel Arratia, Kenneth Barish,  Bishnu Karki, Ryan 
Milton, Piyush Karande, and Aaron Angerami
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Electron Ion Collider
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• Collide Electron and 
Protons + Ions

- 18 GeV Electrons 

- 275 GeV Protons/Ions

-  GeV


• To be built an Brookhaven 
national lab, Long Island


• Provide access to regions 
in the nucleon/nuclei 
where their structure is 
dominated by gluons

s = 89

Many detectors are still at the design stage
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Forward Hadronic Calorimeter
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Case Study: Optimization of forward HCAL in ePIC detector

Calorimeter Insert

HCAL

ECAL

● Simulated Data (Information in Wiki)
○ Particle: e-, 𝞹+, neutrons
○ Polar angle:  𝝷 = 17 deg, 10< 𝝷 < 30 deg
○ Calorimeter Configuration: HCAL  only, 

ECAL in front of HCAL
○ Continuous and discrete in energy

● Saved models are found in Wiki with dataset 
used

p e−

• The incoming proton/ion has a significantly larger kinetic energy than the 
incoming electron.

• If we want to measure jets, we need a granular, forward calorimeter


- Forward region, 1.2 < η < 3.5

• DeepSets and GNNs for pion energy regression

• Software Compensation (energy scale)

•G4 geometry modeled approximately after ePIC

HCal

ECal

275 GeV 18 GeV
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Forward HCal
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•High-granularity iron-scintillator calorimeter 


•Forward region, 1.2 < η < 3.5 


•55x55x55 cells


•Sampling calorimeter comprised of 0.3 cm 
scintillator tiles sandwiched between 2.0 cm 
steel plates

Optimization Possibility in ePIC
- Technology in ePIC HCAL and Insert uses SiPM-on-tile approach.
- Number of longitudinal sections and their position can be easily 

changed in practice (summing SiPM pulses) before readout. 
- Default is 7 equidistant z-sections regardless of radius. 
- Energy density varies with radius, so this is likely non-optimal

HCAL and Insert:
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FIG. 1. Examples of 4 typical reconstructed 3D shower shapes in HCal for ⇡+
with the MIP cut described in text. The color

code represents deposited energy in term of EMIP .

where SFhcal = 2.2%, SFecal = 3.0% are the sampling fraction for HCal and ECal respectively. Sampling fractions82

are computed using the electron at fixed energy (40 GeV) as given by Equation 283

Sampling Fraction =

 Pcell Ei

ETruth

!

at 40 GeV electron

. (2)

We have characterize the performance of hadronic calorimeter by energy scale and resolution. Energy scale is the84

mean obtained through a Gaussian fit to Ereco/ETruth distribution. While resolution is quoted as the ratio of sigma85

to mean from Gaussian fit to Ereco/ETruth distribution. Reported resolution are corrected by the energy scale.86

The cell hits are represented via point cloud representation. The AI-based model employs a graphical neural network87

architecture that operates without incorporating edge information, known as a deepset. In this setup, the nodes in the88

network are represented by the cell information, denoted as E, X, Y, and Z. Additionally, the global nodes are derived89

from the cluster sum of E. To optimize the model, Mean Squared Error (MSE) is chosen as the loss function, while90

the activation function used is the Rectified Linear Unit (RELU). The network is designed with a latent size of 6491

and consists of 4 layers. To facilitate e↵ective learning, a learning rate of 1e-3 is employed. All the hyperparameters92

are optimized hence by combining these elements, the model aims to e�ciently capture the underlying patterns and93

relationships in the given data.94

With 4 input features (”4D” cell hits) the input training matrix (node features) for every event can be represented95

as:96
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Detector Simulation and Reconstruction
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• Geant4 Simulation of single  showers 

•  Cell Hits per shower, point clouds 
• Establish a model to predict  given cell information

• ML for Software Compensation and Energy Reconstruction 
• Optimal reconstruction scheme is non-trivial in a complex system

π+ 1 < PGen. < 125 GeV/c
𝒪100 − 1000

PGen.

3

FIG. 1. Examples of 4 typical reconstructed 3D shower shapes in HCal for ⇡+
with the MIP cut described in text. The color

code represents deposited energy in term of EMIP .

where SFhcal = 2.2%, SFecal = 3.0% are the sampling fraction for HCal and ECal respectively. Sampling fractions82

are computed using the electron at fixed energy (40 GeV) as given by Equation 283

Sampling Fraction =

 Pcell Ei

ETruth

!

at 40 GeV electron

. (2)

We have characterize the performance of hadronic calorimeter by energy scale and resolution. Energy scale is the84

mean obtained through a Gaussian fit to Ereco/ETruth distribution. While resolution is quoted as the ratio of sigma85

to mean from Gaussian fit to Ereco/ETruth distribution. Reported resolution are corrected by the energy scale.86

The cell hits are represented via point cloud representation. The AI-based model employs a graphical neural network87

architecture that operates without incorporating edge information, known as a deepset. In this setup, the nodes in the88

network are represented by the cell information, denoted as E, X, Y, and Z. Additionally, the global nodes are derived89

from the cluster sum of E. To optimize the model, Mean Squared Error (MSE) is chosen as the loss function, while90

the activation function used is the Rectified Linear Unit (RELU). The network is designed with a latent size of 6491

and consists of 4 layers. To facilitate e↵ective learning, a learning rate of 1e-3 is employed. All the hyperparameters92

are optimized hence by combining these elements, the model aims to e�ciently capture the underlying patterns and93

relationships in the given data.94

With 4 input features (”4D” cell hits) the input training matrix (node features) for every event can be represented95

as:96

2

66666666664

Eh
1 Xh

1 Y h
1 Zh

1 1
Eh

2 Xh
2 Y h

2 Zh
2 1

...
...

...
...

...
Eh

n Xh
n Y h

n Zh
n 1

Ee
1 Xe

1 Y e
1 Ze

1 0
...

...
...

...
Ee

n Xe
n Y e

n Ze
n 0

3

77777777775



Fernando TA 11/27/23Fernando TA 11/27/23

AI Codesign
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• Obtain dependable, highly performant energy 
reconstruction scheme


• “co” design: surrogate models provide the optimal 
reconstruction of the high-dimensional calorimeter 
dataset


• Fast Simulation using generative models 


• Optimal detector design informed by the 
optimal detector reconstruction scheme
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Deep Sets
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1. Transform inputs into some latent space

2. Destroy the ordering information in the latent space (+, )

3. Transform from the latent space to the final output

μ

Permutation Invariant 
Works well with point clouds 

A GNN without edges arXiv: 1703.06114
arXiv:1810.05165
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1 2 3

https://arxiv.org/abs/1703.06114?ref=inference.vc
https://arxiv.org/abs/1810.05165
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Deep Sets

8

Goal: 
 Energy 

Regression
π+

{E 
X 
Y 
Z}Xi = ∈ ℝ4

X1

X2

Xn

..
.

nodes (cells)

 S
ho

w
er

 w
ith

 n
 c

el
ls

π+

C
lu

st
er

 E
ne

rg
y

Model uses energy and position information for energy regression

1 2 3

1. Latent 
2. Aggregation 
3. Final Output
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Graph Neural Network
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• For each node in the graph, gather all the 
neighboring node embeddings (messages)


• Aggregate all messages via an aggregate 
function


• All pooled messages are passed through an 
update function, usually a learned neural 
network

Regression

Using k-nearest neighbors
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Obligatory Model Schematics
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FIG. 2. A schematic of the GNN model.

17 cm deep (22 X0) and lack longitudinal segmentation.
Conversely, the HCAL adopts a design similar to that of
CALICE SiPM-on-tile design [16], following a geometry
proposed in Ref. [17]. It features a 4 mm thick scintillator
layer sandwiched between 16 mm absorbers. The system
comprises 64 layers of absorbers: the initial four layers
are made of tungsten, succeeded by 60 layers of steel, for
a total of 6.2�. The transverse area of the scintillator
measures 5⇥5 cm2.

The ePIC HCAL will employ a method that combines
various SiPM-on-tile signals to delineate longitudinal seg-
ments within the calorimeter. This will be accomplished
by summing SiPM-on-tile signals to establish a nomi-
nal granularity of 7 equidistant segments, as described in
Ref. [17]. In our study, we examine additional possible
configurations by incorporating hit signals to define lon-
gitudinal segments. To achieve this, we group the hits
from the previously mentioned configuration, which rep-
resents the maximum achievable granularity, with each
layer being read out independently, resulting in a total
of 64 layers

While the described geometry does not capture all de-
tails of the actual ePIC mechanical design, it serves as a
reasonable approximation for the purposes of this study.

No additional material in front of the calorimeter sys-
tem is included in the simulation. Signals are digitized
with 13-bit ADC, and the simulation does not incorpo-
rate electronic noise. The simulation framework, which
includes the digitization process, has been validated by
replicating CALICE data [13], as elaborated in previous
research [18].

A. Datasets

Positive pions (⇡+) were generated with a polar angle,
✓, in the range 10� < ✓ < 30�. Because the detector
is symmetric about azimuthal angle, �, the particles are
generated with an azimuthal angle range of 0� < � <
360�. We generated ⇡+ particles in uniform log10 space
in the range of 1 < ETruth < 140 GeV. A total of 1.5

million single-⇡+ showers were generated.
Figure 3 shows some example shower shapes for ⇡+

with random energy, ✓, and � . As expected, the showers
contain two main components: a narrow core with large
energy deposits from electromagnetic sub-showers and a
halo comprised of low-energy cells from hadronic sub-
showers.
The Geant data is stored in files containing two

datasets, clusters and cells. The cluster dataset contains
the ETruth of the incident pion, as well as the number of
hits in the calorimeter. The cell data is comprised of a
constant number of 200 cells per event. The cell data pro-
vides energy, position (X, Y , and Z), and time of each
hit, represented as point clouds. For studies including
ECAL information, an index k is included that indicates
whether the cell is part of the ECAL (k = 0) or part of
the HCAL (k = 1). In addition to node feature, cluster
sum given by the Eq. 6 is provided as the global feature.
Following previous CALICE studies [13, 16], the selec-

tions listed below are applied to the data:

• Cell energy for each hit must be greater than half
of the Minimium Ionizing Particle (MIP) energy for
respective calorimeters (Ecell > 0.5⇥ EMIP ).

• Hit time less than 150 ns.

EMIP is 260 MeV and 130 MeV for the ECAL and HCAL,
respectively. EMIP is estimated using the most probable
value from a 20 GeV µ� simulation.
The baseline approach, referred to as “Strawman”,

represents the simplest form of reconstruction, which in-
volves summing up the hit energy and accounting for the
sampling fraction. Using the Strawman approach, the
reconstructed energy can be expressed as follows:

EReco =

Pcell Ei

SFhcal
+

Pcell Ei

SFecal
, (6)

where SFhcal = 2.2%, SFecal = 3.0% are the sampling
fraction for the HCAL and ECAL, respectively. Sampling
fractions are computed using an electron at fixed energy
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FIG. 1. A schematic of the DeepSets model.

are all connected to each other with the set of edges, E.
The GNN learns a hidden representation of the graph
that is updated via a three-step message-passing process
outlined in Ref.[23]. This message-passing process in-
volves functions of the global node features u, the node
features vi, and the edge features eij . The updated edge
features e0ij are defined as:

e0ij = fedge (u, vi, vj , eij) . (3)

This first step in the message passing process, updates
all the edges to e0ij , using the global node feature u, cur-
rent edge feature eij , and the features from the two nodes
connected by them, vi and vj . The updated node features
v0i are defined as:

v0i = fnode

0

@u, vi,
X

j2Ni

e0ji

1

A . (4)

This second step aggregates the information from the
target node’s neighbors, Ni to the target node, using
a permutation-invariant function (

P
), similar to those

used in DeepSets. Each node is then updated to v0i by
using the global node feature u, current node features vi
and the “messages” aggregated from its neighbors in the
updated edge features e0ij to form an embedded represen-
tation.

The last step is to aggregate the hidden node embed-
dings in order to quantify the entire graph structure for
the purpose of energy regression. This aggregation of
node embeddings is performed by updating the global
node features u that encode graph-level attributes:

u0 = fglobal

 
u,
X

i2N
v0i

!
. (5)

The functions fedge, fnode, and fglobal are approxi-
mated by MLPs as described in Sec. II A. Figure 2 shows

a schematic of the GNN model used in this study. The
schematic is very similar to Figure 1, but includes an ad-
ditional Edge MLP.

The Edge MLP approximates the fedge functions and
uses the edge, node, and global features as inputs as
shown in Eq. 3. The output of the Edge MLP is aggre-
gated across all edges connected to a node and used along
with that node’s features and global features as an input
to the Node MLP which approximates fnode as shown in
Eq. 4. The output of the Node MLP is then aggregated
across all nodes and used along with the global features as
an input to the Global MLP approximating fglobal given
by Eq. 5. The updated edges, nodes, and global features
can be used to define the updated output graph. This
updated graph can then be used to repeat the message-
passing scheme several times by stacking such that the
latent graph representation is updated based on infor-
mation propagated through the whole graph. However,
to match the size of the DeepSets and GNN models as
closely as possible we only use one of the GNN blocks.
As in the case of DeepSets model, the updated global
node features u0 with a dense layer are used to predict
the Energy. The GNN model is trained with the same
initial learning rate optimizer, batch size, and number of
epochs as the DeepSets model described in Section IIA

III. SIMULATIONS

We employed the DD4HEP framework [24] to run
Geant [25] simulations of a calorimeter system that in-
corporates both an ECAL and an HCAL. The detector
design and geometry are similar to the forward calorime-
ter system intended for the future ePIC detector at the
EIC [17]. Both the ECAL and HCAL feature a non-
projective geometry, with tower elements aligned parallel
to the beam axis.
The ECAL employs tungsten-powder/scintillating

fiber technology [26, 27], following the design outlined
in Ref.[28]. Its towers have an area of 10⇥10 cm2, it is

• In theory, DeepSets can learn everything a GNN can

• We encode geometric information directly in the GNN
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Varying the Input Features
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Want understand what information is most relevant for the Energy 
Reconstruction and ML-based software reconstruction

We train Deepsets models on E, E+Z, E+XYZ (1D, 2D, 4D)
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FIG. 4. Energy resolution (left) and energy scale (right) of calorimeter with di↵erent number of z-sections along the longitudinal
direction. The bottom panel of resolution plot shows the square root of di↵erence in squares of resolution of 1 z-section and
the given z-sections.

FIG. 5. Comparison of regression model performance with di↵erent input features. Energy resolution (left) energy scale (right).
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Energy Regression:  
Feature Dimension

• Biggest improvement after the inclusion Z information (2D 4D less impactful)

• Less sensitive to fluctuations of the EM fraction of the shower

• Energy scale within 2% of truth (1% after 10 GeV)


- Effective Software Compensation!

→

arXiv:2310.04442
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FIG. 1. Examples of 4 typical reconstructed 3D shower shapes in HCal for ⇡+
with the MIP cut described in text. The color

code represents deposited energy in term of EMIP .

where SFhcal = 2.2%, SFecal = 3.0% are the sampling fraction for HCal and ECal respectively. Sampling fractions82

are computed using the electron at fixed energy (40 GeV) as given by Equation 283

Sampling Fraction =

 Pcell Ei

ETruth
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at 40 GeV electron

. (2)

We have characterize the performance of hadronic calorimeter by energy scale and resolution. Energy scale is the84

mean obtained through a Gaussian fit to Ereco/ETruth distribution. While resolution is quoted as the ratio of sigma85

to mean from Gaussian fit to Ereco/ETruth distribution. Reported resolution are corrected by the energy scale.86

The cell hits are represented via point cloud representation. The AI-based model employs a graphical neural network87
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network are represented by the cell information, denoted as E, X, Y, and Z. Additionally, the global nodes are derived89

from the cluster sum of E. To optimize the model, Mean Squared Error (MSE) is chosen as the loss function, while90

the activation function used is the Rectified Linear Unit (RELU). The network is designed with a latent size of 6491

and consists of 4 layers. To facilitate e↵ective learning, a learning rate of 1e-3 is employed. All the hyperparameters92

are optimized hence by combining these elements, the model aims to e�ciently capture the underlying patterns and93
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Data Processing for Models

13

• Full point-cloud readout is unrealistic for final detector

• Segment the calorimeter N=1-64 layers

• Run regression, identifying optimal longitudinal configuration

4-Layer Configuration
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FIG. 4. Energy resolution (left) and energy scale (right) of calorimeter with di↵erent number of z-sections along the longitudinal
direction. The bottom panel of resolution plot shows the square root of di↵erence in squares of resolution of 1 z-section and
the given z-sections.
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Energy Regression: 
 Number of Layers

• 1-Layer configuration w/ Deepsets outperforms baseline

• Intuitive increase in performance as  increases

• Software compensation does incredibly well

Nz

arXiv:2310.04442
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ML for Energy Reconstruction
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• DeepSets & GNNs  extremely effective 
models for software compensation

- Energy scale within 1% of unity


• Every Resolution most effected by 
longitudinal information. Less sensitive to 
transverse segmentation


• Can easily regress , ϕ η

https://arxiv.org/abs/2310.04442
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Conditioning Model lz
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Can we use gradient-optimization techniques to optimize our detector design?
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Conditioning Models
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• Similar to the 1-64L study, we re-group the point cloud 

• Models have the same point-cloud input as before 
• Addition of  input 

- position of longitudinal boundaries

• For every event, 5 random configurations of layers are created

lz

3

FIG. 1. Examples of 4 typical reconstructed 3D shower shapes in HCal for ⇡+
with the MIP cut described in text. The color

code represents deposited energy in term of EMIP .
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↔
↔ GeV/cPGen. > 50.0
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Conclusions
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• GNNs and DeepSets towards optimal segmentation and 
energy reconstruction

- Emphasis on the importance of optimizing longitudinal segmentation

- arXiv:2307.04780


• These models can lay a foundation for gradient 
optimized detector design

- MODE_2023


• Score based generative models using point clouds are 
ideal for fast calo-sim at the EIC

- arXiv:2307.04780

https://arxiv.org/pdf/2307.04780.pdf
https://indico.cern.ch/event/1242538/contributions/5432837/attachments/2690371/4675144/MODE%20Conditioned%20Deep%20sets.pdf
https://arxiv.org/abs/2307.04780#:~:text=Recent%20advances%20in%20generative%20models,in%20calorimeters%20with%20high%20granularity.
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END
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Backup
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σE = f(z1, z2, ⃗x)

22

We have a differentiable function for energy resolution 

Layer positon [mm] Layer positon [mm]

 GeV/cPGen. < 10.0  GeV/cPGen. > 50.0
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Deep Sets
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1. Transform inputs into some latent space

2. Destroy the ordering information in the latent space (+, )

3. Transform from the latent space to the final output

μ

Permutation Invariant 
Works well with point clouds 

A GNN without edges arXiv: 1703.06114
arXiv:1810.05165
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1 2 3

https://arxiv.org/abs/1703.06114?ref=inference.vc
https://arxiv.org/abs/1810.05165
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2 Diffusion Models
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1. Take as input , learns 


2. Take as input , learns 

PGen. Nhits

Nhits
Ecell, Xcell, Ycell, Zcell

7

FIG. 4. Comparison of the average and z coordinate. The
dashed red lines in the bottom panel of each figure represent
the 10% deviation interval of the generated samples from the
original Geant simulation.

tations, small deviations in point cloud distributions can
be summed into larger deviations during the voxelization
process, where 125 individual cells are combined into a
single voxel. However, there is a large symmetry group
under which mismodelings in the bigger space may not
a↵ect the modeling in the coarser space, so further in-
vestigation is needed. However, the very good agreement
with Geant in the number of cell hits and degrading
agreement in the number of voxel hits indicates that the
first di↵usion model of the point cloud model architecture
is performing well, while the second model, responsible
for sampling the cell distributions, would likely benefit
from additional tuning.

Similar conclusions can be derived from Fig. 6, show
the generated point samples at the full detector granular-
ity and in good agreement with Geant. Fig. 6 shows the
average x, y, and z coordinate distributions, as well as
the cell log10E distribution in the point representation.
Again, there are larger relative deviations in the first and
last layers in x, y, and z, coordinates where there are very
few hits, just as in the image representation. However,
there is very good agreement with the Geant simulation
in layers containing a reasonable number of hits.

V. CONCLUSION AND OUTLOOK

In this paper, we make the first direct comparison be-
tween two score based generative models using either

FIG. 5. The total number of hits in the point cloud represen-
tation of calorimeter showers, at full granularity. The dashed
red lines in the bottom panel of each figure represent the 10%
deviation interval of the generated samples from the original
Geant simulation.

images or point clouds as representations of the same
training data. We use Geant calorimeter simulations
of a high-granularity hadronic calorimeter. Both mod-
els perform well for most distributions, with very similar
AUCs, but the image-based di↵usion model invariably
has a lower EMD in each comparison to Geant.

Overall, the performance of the point-cloud di↵usion
model is very close to the image model. This is despite
the point cloud model being disadvantaged in this work
in a few important ways.

First, the calorimeter showers from the FPCD model
are closest to Geant in the point cloud representation at
the full calorimeter granularity, as shown in Fig. 5 and
6. But it is later voxelized for comparison. This may
compound mismodeling during the voxelization, however
further investigation is needed.

Second, the point cloud model is adapted from a model
architecture initially designed for jet data from the Jet-
Net datasets. While the high-level structure of the
datasets are very similar, the data itself are quite dif-
ferent. For example, the first di↵usion model making
up the point cloud model was initially much larger, as
predicting the jet multiplicity is in general a more dif-
ficult problem than the number of non-empty cells in a
calorimeter shower. Reducing the size of the first di↵u-
sion model of the point cloud model architecture had no
impact on performance while speeding up training. The

8

(a) (b)

(c) (d)

FIG. 6. Comparison of the average cell x (top left), y (top right), z (bottom left) and log10E (bottom right) distributions in
the point cloud datasets. Each distribution is binned according to the cell-width to show the full granularity of the detector.
The dashed red lines in the bottom panel of each figure represent the 10% deviation interval of the generated samples from the
original Geant simulation.
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7

FIG. 4. Energy resolution (left) and energy scale (right) of calorimeter with di↵erent number of z-sections along the longitudinal
direction. The bottom panel of resolution plot shows the square root of di↵erence in squares of resolution of 1 z-section and
the given z-sections.

FIG. 5. Comparison of regression model performance with di↵erent input features. Energy resolution (left) energy scale (right).
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• Geant4 Simulation of single  showers

• Condition model on position of longitudinal 

segmentation

π+
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Adjacency Matrix
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Simple Example of Adjacency Matrix for GNN 
In our case, we use Keras K-Nearest neighbors algorithm in cartesian coordinates
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Forward HCal
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•High-granularity iron-scintillator 
calorimeter 


•Forward region, 1.2 < η < 3.5 


•Sampling calorimeter comprised of 0.3 cm 
scintillator tiles sandwiched between 2.0 
cm steel plates

Optimization Possibility in ePIC
- Technology in ePIC HCAL and Insert uses SiPM-on-tile approach.
- Number of longitudinal sections and their position can be easily 

changed in practice (summing SiPM pulses) before readout. 
- Default is 7 equidistant z-sections regardless of radius. 
- Energy density varies with radius, so this is likely non-optimal

HCAL and Insert:
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Longitudinal Segmentation
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Layer 1 Layer 2

Z Position (mm) Z Position (mm)
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MSE Loss Plot

29

1.0 < E < 125 GeV

Layer Positon [mm]

 GeV/c1.0 < PGen. < 125.0


