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INTRODUCTION



MOTIVATION

ePIC Low-Q2 Tagger

∙ The ePIC Low-Q2 Tagger extends the reach of the central detector
down to effectively Q2=0.

∙ Electrons with reduced energy are steered away from the main
beam.

∙ Scattered electrons from DIS events will be swamped by a
background of Bremsstrahlung.

∙ A total of O(10) electron tracks from the IP are anticipated per
bunch crossing.

∙ Additional, significant but currently unquantified backgrounds, from
electron beam gas interactions and synchrotron radiation.

Figure 1: ePIC Low-Q2 Tagger in Far Backward region.

Figure 2: Low-Q2 Tagger stations placed beside the
outgoing electron beamline. Each station consisting of 4
tracker layers.

∙ For precise measurements of photo production
and vector mesons.
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THE TRACKING CHALLENGE

Challenge

∙ From a varying number of Nhits reconstruct an unknown number
of Mparticles .

∙ Conventional approaches require looping over valid
combinations of hits.

∙ High order of combinations to check computationally expensive.
∙ Latency per sample can fluctuate wildly.
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Current Approach

∙ Separate hits by module.
∙ Cluster hits in layer.
∙ Linear least squares fit and χ2 filter all
combinations of hits in 4 layers.

∙ Project track onto common plane.
∙ Use position and direction vector as input
into DNN, reconstructing electron
momentum at interaction vertex.

∙ Good for single particle simulations but
doesn’t extend well for backgrounds and
streaming.
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OBJECT CONDENSATION



OBJECT CONDENSATION

∙ Object Condensation method presented by Jan Kieseler 20201.

∙ Graph network architecture taking each hit as a node.

∙ GravNet layers pass messages between closest neighbours in learned space2.

∙ After passing through the graph layers, every node now has the information encoded for a track.

∙ A single hit per track is identified as a ”condensation point”, should provide the best estimate of track
properties.

∙ Hits from the same track are clustered around the the condensation point.

∙ Classification and regression can additionally be carried out on the encoded information.

∙ Recent study on simulations for Charged Particle Tracking at the High Luminosity LHC3.

Is this a sledgehammer to crack a nut for the
Low-Q2 tagger? -Maybe... But the unknown
backgrounds are expected to be high.

1Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data
2Learning representations of irregular particle-detector geometry with distance-weighted graph networks
3An Object Condensation Pipeline for Charged Particle Tracking at the High Luminosity LHC
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https://link.springer.com/article/10.1140/epjc/s10052-020-08461-2
https://link.springer.com/article/10.1140/epjc/s10052-019-7113-9
https://arxiv.org/abs/2309.16754


OBJECT CONDENSATION
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OBJECT CONDENSATION LOSS

Latent Space Potential Loss

∙ Loss from the potential calculated from hits from each particle with
maximum .

∙ The potential is scaled by the product of the charges
qi = arctanh2βi + qmin

∙ A well trained network should see only hits belonging to the same
particle within r<1.
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Beta Loss

∙ The product of β in the potential loss pushes β → 0
for every hit.

∙ Need one high β for each track for condensation point
to form. Force sum over β hits from track = 1

∙ lossβ = 1-β

Noise Loss

∙ β values for noise are not pushed to 0

∙ Additional loss term is needed, summing/averaging
over noise hit β values.

Additional Losses

∙ Regression/Classification tasks can be performed per
node or subset of nodes as required.

∙ Requires loss balancing via hyperparameters.
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SIMULATION SETUP



SIMULATION STUDIES

Event sample

∙ Mixed Bremsstrahlung-QR photoproduction events
generated using GeTaLM4- Custom generator for EIC.

∙ Single QR photoproduction electron from 18x275 GeV
collision.

∙ Bremsstrahlung sample from maximum luminosity
18x275 GeV bunch crossing. Average O(10) per event.

∙ No additional backgrounds input, only originating
from secondaries produced by Geant4.

Simulation

∙ Initial studies were carried out using the default ePIC
geometry. A custom ePIC geometry configuration is
required for full truth matching.

∙ Default geometry currently doesn’t save secondary
particles outside of central tracking region.

∙ Around 30% of events contain particles which create
a shower of secondary hits which all get handed the
truth id of the primary.

∙ Initial studies cleaned this data by cutting on a max 4
hits per track.

∙ Custom geometry extends the tracking region.

4GETaLM: A generator for electron tagger and luminosity monitor for electron - proton and ion collisions
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https://www.sciencedirect.com/science/article/abs/pii/S0010465521003635


TRACK IDENTIFICATION METRICS

Track Building

∙ Cut on β to select condensation points.

∙ Calculate distance between condensation points and other
points.

∙ For each layer, select hit closest to condensation point.

Tracking Metrics

∙ True positive (TP) defined as a true track predicted by
network - All hits belong to the same track.

∙ False Positive (FP) defined as any other track predicted by
network.

∙ Efficiency: Proportion of true tracks that were recovered by
the network. Expected number of true tracks (N)

∙ TP
N

∙ Purity: Proportion of true tracks in all tracks predicted by the
network.

∙ TP
TP+FP 11



SELECT STUDIES



TRAINED METRICS

Original data sample with maximum 15 true tracks per
event.

Figure 3: Tracking metrics as a function of training epoch.

High occupancy data sample combining 10 events into
one with maximum 82

Figure 4: Tracking metrics against the number of true tracks in
an event.
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ADDING INEFFICIENCIES

80% detector hit efficiency added - 20% of hits removed from sample.

Figure 5: Hits from tracks in 4 layers with inefficiencies added.

Figure 6: Tracking metrics against the number of hits per track.

Real detector efficiency expected to be >99% 14



ADDING ARTIFICIAL NOISE

Figure 7: Distribution of artificial noise hits
added to event.

Figure 8: Sample event showing tracks
identified in module 2 with
inefficiencies and noise added

Figure 9: Efficiency and purity as a
function of included noise
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QUASI-REAL TRACK CLASSIFICATION

Figure 10: Rates per trigger as a function of Q2 for Bremsstrahlung (blue) and
Quasi-Real (red)

Quasi-Real Identification

∙ Appears to do better than a simple Q2 cut by using the full electron
momentum.

∙ Only has access to the relative momentum distributions of the samples,
cannot beat the beam divergence.

∙ Exclusivity restrictions imposed by other detectors should improve this.

Figure 11: Learned response showing separation of
QR and Bremsstrahlung events.
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RECONSTRUCTING MOMENTUM

∙ Using custom ePIC geometry.
∙ Only hits from single event.
∙ Refurbished code to allow direct use of
Ragged Tensors5 .

∙ Momentum loss only measured for
primary tracks.

∙ Condensation point allowed for any track
>3 hits

∙ Classification of whether an track is from
primary vertex or a secondary interaction.

∙ Separated data by tagger module. (Tagger
1 shown) Figure 12: Predicted momentum for all

condensation points.
Figure 13: Learned response
separating condensation points from
primary and secondary tracks.

5We used and adapted the original code written in Tensorflow due to familiarity, rather than updating to the recommended PyTorch implementation
which is still under development.
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RECONSTRUCTING MOMENTUM

∙ Using custom ePIC geometry.
∙ Only hits from single event.
∙ Refurbished code to allow direct use of
Ragged Tensors5 .

∙ Momentum loss only measured for
primary tracks.

∙ Condensation point allowed for any track
>3 hits

∙ Classification of whether an track is from
primary vertex or a secondary interaction.

∙ Separated data by tagger module. (Tagger
1 shown) Figure 12: Predicted momentum cut

on primary classification response
>0.8.

Figure 13: Learned response
separating condensation points from
primary and secondary tracks.

5We used and adapted the original code written in Tensorflow due to familiarity, rather than updating to the recommended PyTorch implementation
which is still under development.
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FUTURE PLANS



FUTURE PLANS

Shared hits

∙ Hits with contributions from more than
one track will have conflicting potentials.

∙ In order to allow these to minimize to 0
loss, a potential with a repulsive core may
be considered
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Balancing losses

∙ Current results produced in a variety of networks, need to bring together.

∙ Simultaneous training on the condensation, classification and regression
requires weighted losses.

∙ Hyper-parameters need optimisation to get the best results, ideally
automatically tuned.

Improvements and Integration

∙ The ePIC simulation is rapidly evolving.

∙ Needs particles to potentially producing hits in multiple pixels to be clustered.

∙ Addition of beamgas and synchrotron backgrounds will increase the number of
hits.

∙ Multi-class classification of hit source can be investigated,

∙ Integrate the training and inference into the ePIC software stack.

∙ How does this best translate to streaming readout data?
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CONCLUSIONS



CONCLUSIONS

Conclusions

∙ Very promising one step particle reconstruction
method.

∙ Good results across a range of studies.
∙ Lots more work to tune and extend model.
∙ Questions?
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