Bayesian Optimization Techniques for Accelerator Control and Characterization

Ryan Roussel 11/29/2023 rroussel@slac.stanford.edu

Machine Learning Based Accelerator Control

Goals:

- Automate routine tasks + improve performance
- Enable new capabilities

Challenges:

Practical constraints and complexities of realistic accelerators

Accelerated beam

Incorporating prior knowledge

f(x)

SLAC

HPC Physics Simulation

Measurement

Database

Optimization Considerations

Problem complexity how difficult is the problem to solve?

Optimizer cost

how expensive is it to make decisions?

Overhead how expensive is it to prepare for optimization?

Evaluation cost how expensive is it to evaluate objectives/constraints?

Bayesian Optimization Algorithms

Gaussian Process Modeling

Why?

- Extracts a lot of information from a small number of data points \rightarrow efficient
- Inherently accounts for noise and sources of uncertainty → ideal for accelerators
 + global optimization

Gaussian Process Modeling

- Assume a Normal distribution of function values at prediction points x^*
- Use correlations between function values at different locations in input space to make predictions

Fitting Gaussian Processes to Data

We specify a **kernel** that specifies function value covariances at two points $x, x' \rightarrow$ controls the overall function behavior. It is parameterized by **hyperparameters** which are fit to the data.

Radial Basis Function:

$$k(x, x') = \sigma_f^2 \exp\left(-\frac{1}{2l^2}(x - x')^2\right) + \sigma_n^2 \delta_{xx'}$$

Kernel amplitude

Kernel length scale Noise

We learn **low dimensional structure** of the objective function during optimization.

Incorporating Physics Information into Kernels

Enforce linear centroid response to steering magnets

Enforce quadratic beam size squared response to quadrupole magnets

Add cross correlations between magnet parameters

Incorporating physics information into GP models improves accuracy \rightarrow Enables better decision making \rightarrow faster convergence to optimum

Duris et. al., PRL, 2020

Modeling Complex Physical Processes

Use **low fidelity approximations** to inform optimization at **high fidelities** Model kernel: $k(x, x', s, s') = k(x, x') \times k(s, s')$

SLAC

10

Defining Acquisition Functions

Define a function that characterizes the value of making a potential measurement (given a predictive model). **Exploitation** 2 **Exploration** output, f(x) N -5 5 input, x

Single Objective Optimization

-SLAC

- The model accuracy improves in the region of interest
- Initially the model uncertainty is maximized at the domain boundaries

Many examples of this:

- Duris, J. et al. PRL 124.12 (2020): 124801.
- Xu, Chenran, et al. PRAB 26.3 (2023): 034601.
- Gao, Y., et al. PRAB 25.1 (2022): 014601.
- Miskovich, S. A., et al. *PRAB* 25.4 (2022): 044601.
- and many more...

Multi-Objective Optimization

Determine the optimal trade-off between objectives -> the Pareto front

Roussel et. al. *Nat. Comm.* **2021** 15

If the function changes more rapidly along one axis, sample more points along that axis!

 $\alpha(\mathbf{x}) = \sigma(\mathbf{x})$

Example: FACET-II Emittance Characterization

Used Bayesian Exploration for efficient high-dimensional characterization (10 variables) at 700pC: 2 hrs for 10 variables compared to 5 hrs for 4 variables with N-D parameter scan

Data was used to train ML models to predict + optimize beam emittance and injector match

Example of integrated cycle between characterization, modeling, and optimization \rightarrow now extending to larger system sections and new setups (e.g. two-bunch)

transverse phase space

SLAC

Validity probability

Incorporating Constraints

Weight the acquisition function by the probability that constraints are satisfied

Proximal Biasing

Prevents instabilities during optimization experimental beamlines

Weight the acquisition function by travel distance → better than hard limits

$$\hat{\alpha}(x) = \alpha(x) \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)$$

Warning: Requires $\alpha(x) \ge 0$

Reduces travel distances during exploration

Roussel et. al. Nat. Comm. 2021

Optimizing Virtual Measurements

Trust Region Bayesian Optimization (TuRBO)

- Bayesian optimization tends to over-prioritize exploration to find global optima
- **Restrict search region** to local area around best point
- Expand / contract "trust" region based on algorithm successes / failures on-the-fly
- Helps find local extrema in high dimensional problems
- Optimization success at ESRF led to the highest ever observed lifetime using 8 knobs in under 30 mins

Xopt: Flexible Optimization of Arbitrary Problems

(single python function!)

evaluate(inputs: dict) -> dict

Currently used at many facilities: SLAC, DESY, Argonne, ESRF, BNL, LBNL, etc.

Many optimization algorithms

- Genetic algorithms (NSGA-II, etc.)
- **Nelder-Mead Simplex**
- Bayesian optimization, almost everything shown in this presentation

https://christophermayes.github.io/Xopt/

Conclusion

- We have identified algorithms available for automating many online and offline optimization tasks in accelerator physics
 - Some work is needed to make faster decisions, characterize safety-performance trade-offs, integrate into control systems
- These algorithms can be used out of the box to improve
 EIC operations and accelerator design in simulation

Thanks to the team!

Gaussian Process Math

Let's predict the function value f^* at the point x

Some intuition...

Which observation will have a larger impact on changing p(f)?

Adding some math

Which observation will have a larger impact on changing p(f)?

k(x, x') < k(x, x'')

Adding some math

$$p(f_A, f_B, f^*) = N(\mu, \Sigma)$$

$$\Sigma = \begin{pmatrix} k(x', x') & k(x', x'') & k(x', x) \\ k(x', x'') & k(x'', x'') & k(x'', x) \\ k(x', x) & k(x'', x) & k(x, x) \end{pmatrix}$$

Adding some math

k(x, x') k(x, x") A 🔶 Prior f(x)В∮ $p(f^*)$ $\mid x^{\prime\prime}$ $\mid x'$ $\mid x$ x

$$p(f^* | f_A, f_B) = N(\mu^*, \sigma^*)$$
$$\mu^* = \mu + K^* K^{-1} (y - \mu)$$
$$\sigma^* = K^{**} - K^{*T} K^{-1} K^*$$

$$p(f^*|f_A, f_B) = \frac{p(f_A, f_B|f^*)p(f^*)}{p(f_A, f_B)} = \frac{p(f_A, f_B, f^*)}{p(f_A, f_B)}$$

Making predictions with GP's

What about multiple predictions? $p(f_0^*, f_1^*, \dots, f_M^* | f_0, f_1, \dots, f_N) = N(\mu^*, \sigma^*)$

Draw function samples? Sample from the joint posterior distribution at requested points

