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Machine Learning Based Accelerator Control

Goals:
• Automate routine tasks + improve performance

• Enable new capabilities

Challenges:
• Practical constraints and complexities of realistic accelerators

• Incorporating prior knowledge

• Scaling
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Optimization Considerations

Problem complexity
how difficult is the problem to solve?

Evaluation cost
how expensive is it to evaluate 

objectives/constraints?

Optimizer cost
how expensive is it to make decisions?

Overhead
how expensive is it to prepare for optimization?



4

Bayesian Optimization Algorithms

Create a computational 

model of the system

Pick the point that 

maximizes value

Determine the value of 

potential future 

measurements
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Gaussian Process Modeling

Gaussian processes (GPs)

Why?

- Extracts a lot of information from a small number of data points → efficient

- Inherently accounts for noise and sources of uncertainty → ideal for accelerators 

+ global optimization
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Gaussian Process Modeling

Strong 

correlation

Weak correlation

• Assume a Normal distribution of function values at prediction points 𝑥∗

• Use correlations between function values at different locations in input space 

to make predictions
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Fitting Gaussian Processes to Data

We specify a kernel that specifies function value 

covariances at two points 𝑥, 𝑥′ → controls the 

overall function behavior. It is parameterized by 

hyperparameters which are fit to the data.

𝑘 𝑥, 𝑥′ = 𝝈𝒇
𝟐 exp −

1

2𝒍2 𝑥 − 𝑥′ 2 + 𝝈𝑛
2 𝛿𝑥𝑥′

Kernel amplitude

Kernel length scale Noise

Radial Basis Function:

We learn low dimensional structure of the 

objective function during optimization.
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Incorporating Physics Information into Kernels

Add cross correlations between 

magnet parameters

Incorporating physics information into GP models improves accuracy

→ Enables better decision making → faster convergence to optimum

Duris et. al., PRL, 2020 
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Modeling Complex Physical Processes

Basic GP Model

More accurate modeling → improved 

optimization performance

R. Roussel, et. al. Phys. Rev. Lett. 128, 204801

Learn both hysteresis properties 

and beam response simultaneously 

using two step modeling
Hybrid GP Model
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Multi-Fidelity Modeling

Pousa, A. Ferran, et al. PRAB 26.8 (2023): 084601.

Use low fidelity approximations to inform optimization at high fidelities

Model kernel: 𝑘 𝑥, 𝑥′, 𝑠, 𝑠′ = 𝑘 𝑥, 𝑥′ × 𝑘(𝑠, 𝑠′)
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Defining Acquisition Functions
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The Acquisition Function

Define a function that characterizes the value of making a potential 

measurement (given a predictive model). Exploitation

Exploration
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Single Objective Optimization

EI 𝒙 = 𝔼[max(𝑓 𝒙 − 𝑓∗)]

Some notes:

- The model accuracy improves in the region of interest

- Initially the model uncertainty is maximized at the 

domain boundaries

𝒙𝑡+1 = argmax𝒙EI(𝒙)
(Assumes maximization)

Many examples of this:
- Duris, J. et al. PRL 124.12 (2020): 124801.

- Xu, Chenran, et al. PRAB 26.3 (2023): 034601.

- Gao, Y., et al. PRAB 25.1 (2022): 014601.

- Miskovich, S. A., et al. PRAB 25.4 (2022): 044601.

- and many more…
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Multi-Objective Optimization

Determine the optimal trade-off between objectives -> the Pareto front

Roussel et. al. PRAB 2021
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Autonomous Characterization – Bayesian Exploration

Roussel et. al. Nat. Comm. 2021
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Example: FACET-II Emittance Characterization

Used Bayesian Exploration for efficient high-dimensional characterization (10 

variables) at 700pC: 2 hrs for 10 variables compared to 5 hrs for 4 variables with N-D 

parameter scan
 

Data was used to train ML models to predict + optimize beam emittance and 

injector match

Example of integrated cycle between characterization, modeling, and 

optimization → now extending to larger system sections and new setups 

(e.g. two-bunch) p
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Weight the acquisition function by the probability that constraints are satisfied
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Incorporating Constraints

ො𝛼 𝑥 → 𝛼(𝑥) ෑ

𝑖

𝑝 𝑔𝑖 𝑥 ≤ ℎ𝑖  

𝑔 𝑥 ≤ 0

Warning: Requires 𝛼 𝑥 ≥ 0

Gardner et. al. ICML 2014

2D Example



Weight the acquisition 

function by travel distance → 

better than hard limits
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Proximal Biasing

Prevents instabilities 

during optimization 

experimental beamlines

ො𝛼 𝑥 = 𝛼 𝑥 exp −
𝑥 − 𝑥0

2

2𝜎2  

Warning: Requires 𝛼 𝑥 ≥ 0

Roussel et. al. Nat. Comm. 2021

Reduces travel distances 

during exploration
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Optimizing Virtual Measurements

Our goal:

Determine the ideal tuning 

configuration 𝒙∗ which 

minimizes emittance

Beam size model

Predict beam emittance as a 

function of tuning config.

(with uncertainty)

Predict optimal tuning 

config. (with uncertainty)  

Miskovich, et. al., arXiv:2209.04587

The BAX algorithm chooses beam size 

measurements that reduce uncertainty in 𝒙∗ 

without measuring emittance directly → 

20x speed up
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Trust Region Bayesian Optimization (TuRBO)

• Bayesian optimization tends to over-prioritize exploration 

to find global optima

• Restrict search region to local area around best point

• Expand / contract “trust” region based on algorithm 

successes / failures on-the-fly

• Helps find local extrema in high dimensional problems

• Optimization success at ESRF led to the highest ever 

observed lifetime using 8 knobs in under 30 mins

S. M. Liuzzo, MO3AO01, ICALEPS 2023 



21

Xopt: Flexible Optimization of Arbitrary Problems

Easy to control

Simple to connect with simulations / machine

(single python function!)
Many optimization algorithms

- Genetic algorithms (NSGA-II, etc.)

- Nelder-Mead Simplex

- Bayesian optimization, almost everything 

shown in this presentation

Text file interface

Python interface

https://christophermayes.github.io/Xopt/ 

Currently used at many facilities: SLAC, 

DESY, Argonne, ESRF, BNL, LBNL, etc.

https://christophermayes.github.io/Xopt/
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Conclusion

- We have identified algorithms available for automating 

many online and offline optimization tasks in accelerator 

physics

- Some work is needed to make faster decisions, 

characterize safety-performance trade-offs, integrate into 

control systems

- These algorithms can be used out of the box to improve 

EIC operations and accelerator design in simulation
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Questions?

Thanks to the team!
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Gaussian Process Math
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Some intuition…

𝑝 𝑓∗ = 𝑁 0,1

Let’s predict the function value 𝑓∗ at the point 𝑥
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Some intuition…

Which observation will have a larger impact on changing p(f)?

𝑝 𝑓∗
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Adding some math

Which observation will have a larger impact on changing p(f)?

k(x, x’)

k(x, x’’)
k(x, x’) < k(x, x’’)

𝑝 𝑓∗
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Adding some math

𝚺 =

𝑘 𝑥′, 𝑥′ 𝑘 𝑥′, 𝑥′′ 𝑘 𝑥′, 𝑥 

𝑘 𝑥′, 𝑥′′ 𝑘 𝑥′′, 𝑥′′ 𝑘 𝑥′′, 𝑥 

𝑘(𝑥′, 𝑥) 𝑘(𝑥′′, 𝑥) 𝑘(𝑥, 𝑥)

K K*

K**K*^T

𝑝 𝑓𝐴, 𝑓𝐵, 𝑓∗ = 𝑁 𝝁, 𝚺

𝑝 𝑓∗| 𝑓𝐴, 𝑓𝐵 =
𝑝 𝑓𝐴, 𝑓𝐵|𝑓∗ 𝑝(𝑓∗)

𝑝(𝑓𝐴, 𝑓𝐵)
=

𝑝 𝑓𝐴, 𝑓𝐵 , 𝑓∗

𝑝(𝑓𝐴, 𝑓𝐵)

𝑝 𝑓∗

Bayes rule
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Adding some math

K K*

K**K*^T

𝑝 𝑓∗| 𝑓𝐴, 𝑓𝐵 = 𝑁(𝝁∗, 𝝈∗)

𝝁∗ = 𝝁 + 𝐾∗𝐾−1(𝒚 − 𝝁)
𝝈∗ = 𝐾∗∗ − 𝐾∗𝑇𝐾−1𝐾∗

𝐾−1~𝒪(𝑁3)!

𝑝 𝑓∗

𝑝 𝑓∗| 𝑓𝐴, 𝑓𝐵 =
𝑝 𝑓𝐴, 𝑓𝐵|𝑓∗ 𝑝(𝑓∗)

𝑝(𝑓𝐴, 𝑓𝐵)
=

𝑝 𝑓𝐴, 𝑓𝐵 , 𝑓∗

𝑝(𝑓𝐴, 𝑓𝐵)
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Making predictions with GP’s

What about multiple predictions?

Draw function samples? Sample from the joint 

posterior distribution at requested points

Distribution

Samples

𝑝 𝑓0
∗, 𝑓1

∗, … , 𝑓𝑀
∗ |𝑓0, 𝑓1, … , 𝑓𝑁 = 𝑁(𝝁∗, 𝝈∗)

(𝑁 𝑥 𝑁) (𝑁 𝑥 𝑀)

(𝑀 𝑥 𝑀)

𝑝 𝑓𝑚
∗ |𝑓0, 𝑓1, … , 𝑓𝑁

𝑥𝑚
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