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Injector compound for RHIC and EIC
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• Relativistic Heavy Ion Collider (RHIC): largest 
operating accelerator in the US. 

• Electron Ion Collider (EIC): the nation’s largest 
particle accelerator project. 

• Alternating Gradient Synchrotron (AGS) and its 
Booster serve as part of the injector compound for 
RHIC and future EIC.

• Bright ion beams in the AGS and Booster are 
required for optimal luminosity and highest polarization 
in RHIC and EIC.

• Obtaining bright beam requires more accurate beam 
control in the injector compound, which is currently 
mostly hand tuned by operators.

Injector 
Compound



Tandem van de Graaff

~1.2 km

Au Pol. Protons
Linac (H-) -- 1.1
Booster 1 2.3

AGS 10 23.8
RHIC 100 255

Typical Top Energies [Total, GeV/N]

Circumference [m]
Booster 201

AGS 807
RHIC 3833

Accelerator Rings
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Heavy Ions Protons
E-beam Ion Source (EBIS) OPPIS (polarized)

Tandem Van de Graaf High-intensity H- 

(unpolarized)

RHIC Accelerator Complex



Alternating Gradient Synchrotron (AGS)
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• Alternating gradient / strong focusing principle: achieve 
strong vertical and horizontal focusing of charged 
particle beam at the same time 

• Accelerates proton to 33 GeV in 1960

• 12 super-periods (A to L), 240 main magnets, 810 m 
circumference

• Now serves as injector for Relativistic Heavy Ion 
Collider (RHIC) 



Orbit Correction at the AGS
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• Traditional orbit correction
• obtain mapping 𝑅 (orbit response matrix) 

from corrector settings �⃗� to orbit 
measurements �⃗�

• inverse mapping to get corrector settings 
∆�⃗� needed to cancel orbit deviations ∆�⃗�

• Orbit correction with NN
• train directly to get inverse mapping, no 

need for extra calculation

• easily update with new data and stay 
accurate



ML method: Neural Network (NN)
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• Establish mapping between a given set of inputs �⃗� and corresponding outputs 𝑌

• Fully connected layers: output = activation(dot(input, weight) + bias)

• Activation function: Hyperbolic Tangent (Tanh) and Rectified Linear Unit (ReLU)

• Feed forward neural network (FFNN): most common, no feedback route



AGS ORM NN model: training results
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• Input 48 vertical corrector kick → Output 72 y orbit measured at BPM

• Trained on 800 data pairs, tested on 200 data pairs: 𝑅! score = 0.998



Inverse AGS ORM NN model: training results
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• Input 72 y orbit measured at BPM → Output 48 vertical corrector kick 

• Trained on 800 data pairs, tested on 200 data pairs: 𝑅! score = 0.993



Alternating Gradient Synchrotron (AGS) Booster
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• Pre-accelerate particles entering the AGS ring

• Accepts heavy ions from EBIS or protons from 
200 MeV Linac

• Serves as heavy ion source for NASA Space 
Radiation Laboratory (NSRL)

• 6 super-periods (A to F), 72 main magnets 



Booster magnet misalignment
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• Magnet location in real machine from 2015 survey data
 

• Misalignment data for quadrupoles and dipoles

• Trouble with making physics simulation with misalignment agree with real orbit data



Script to get Booster orbit responses
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• Script development with Collider Accelerator 
Department (CAD) Controls Group

• FunctionEditor: send trapezoid-like time-
dependent function to corrector power 
supplies

• Script sets three corrector settings: positive, 
zero, negative; and save corresponding orbits



Sample data
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Booster model calibration

• Control: power supply currents of quadrupoles and correctors

• Parameter 𝜃: parameters that affect the orbit but not in our control → (magnet misalignments, 
magnet transfer functions, etc.)

• Output: orbit at the BPMs with certain current configuration

• Invert from measured BPM data to simulation model parameters

• Update beliefs on model parameters with real data → calibrated model 𝑚 (“digital-twin”) can 
be used to optimize beam quality (objective 𝐹)
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Polarization at RHIC

14

Max 
Energy
[GeV]

Pol. At Max 
Energy [%]

Polarimeter

Source+Linac 1.1 82-84

Booster 2.5 ~80-84

AGS 23.8 67-70 p-Carbon

RHIC 255 55-60 Jet, full store avg*

Relative Ramp Polarization 
Loss

 (Run 17, full run avg)
AGS 17 % 
RHIC 8 %

Tandem van de Graaff

Polarimetry available at:
• Source
• End of Linac (200 MeV)
• AGS extraction
• RHIC injection energy
• RHIC flattop

No Booster polarimeter

Loss in polarization along the chain
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Improve Polarization at RHIC
• Figure-of-merits (FOM) for the project 

(“experimental outputs”): emittance, beam 
intensity, polarization

• Trade-offs in optimizing FOMs:
• Emittance ↓ Beam intensity ↑ Polarization ↑

• Trade-offs between controls:
• Beam intensity ↑ → Emittance ↑
• Emittance ↑ → Polarization ↓

• Main areas to optimize:
• Booster injection / capture
• AGS bunch splitting / merging scheme
• AGS spin resonance compensation

AGS Polarization vs. Beam Intensity



Polarization Improvement workflow
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Data-model Integration Scientific Machine Learning Optimization under Uncertainty

• Solve inverse problem for 
unknown model parameters

• Learn data-driven model for 
additional discrepancy

• Include constraints for physics 
processes in surrogate model 
training

• “Soft” constraints as an 
objective penalty

• Bayesian optimization 
simultaneously trains a 
surrogate and identifies a 
maximum function evaluation



Planned project: Booter 
injection/capture
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From Linac

126° 
bend

To Booster

• Booster injection/early acceleration process sets 
maximum beam brightness for rest of acceleration 
though RHIC

• Linac pulse of 300 us, H- beam ~6-9x1011 protons, 
strip through a carbon foil

• Intentional horizontal and vertical scraping reduce 
emittance (and intensity) to RHIC requirements 
~2.5x1011 protons

• Goal: minimize beam loss at scraper

• Controls: Linac to Booster (LtB) transfer line optics 

• Method: Bayesian Optimization

Intensity
Main mag scrape



Planned project: AGS bunch splitting/merging
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• Normal operation: One Linac pulse is captured as 
one bunch in the Booster and remains one bunch in 
AGS and RHIC

• Peak current (space charge) at AGS injection can 
be reduced by splitting the bunch into 2 
longitudinally in Booster before transferring to AGS

• Bunches are later merged at AGS extraction
• Requires expert tuning of many parameters, 

often done ‘by eye’
• Prone to drift over time

• Goal: minimize longitudinal emittance

• Controls: RF voltages, phases

• Method: Reinforcement Learning

Ti
m

e

Merge of AGS proton bunches at flattop



Planned project: AGS 
resonance compensation

19

• Partial snakes in the AGS keep the spin tune away from 
the integer (>0.96), avoiding vertical resonances

• Horizontal resonances remain, currently ‘jumped’ by 
moving the horizontal tune through the resonance

• Each resonance is weak (~0.1% polarization loss)
• But there are many of them (82)

• Proposal to use 15 pulsed skew quadrupoles to eliminate 
residual resonances

• Goal: minimize resonance strengths 

• Controls: skew quadrupole currents 

• Method: Reinforcement Learning / Bayesian Optimization 
(to be explored)

Spin resonance terms 
from skew quads in AGS

Gγ = 43.72

Spin 
tune gap

Tune 
jump

Betatron and spin tunes during AGS ramp



ML Method: Bayesian Optimization
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Surrogate 
model

• A powerful tool for finding the extrema of objective functions that are expensive to 
evaluate

• Bayes’ theorem: probability of event based on previous knowledge of conditions

Acquisition function 
guided sampling

Tune hyperparameters of 𝑓 to maximize likelihood of getting data 𝐷!:#

Expensive 
function Output

Update

Criterion met?



BO technique: Gaussian Process
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• A probability distribution over possible functions 
that fit a set of points

• Mean function + Covariance function

• Kernel: covariance function 𝑘(𝑥-, 𝑥.) of the input variables

• Covariance matrix K = 𝑘 𝑋, 𝑋 =
𝑘(𝑥/, 𝑥/) ⋯ 𝑘(𝑥/, 𝑥0)

⋮ ⋱ ⋮
𝑘(𝑥0, 𝑥/) ⋯ 𝑘(𝑥0, 𝑥0)

• At a sample point 𝑥-, Gaussian process returns mean 𝜇 𝑥-|𝑋 = 𝑚 𝑥- +
𝑘 𝑥-, 𝑋 𝐾1/ 𝑓(𝑋) − 𝑚 𝑋  and variance 𝜎! 𝑥-|𝑋 = 𝑘 𝑥-, 𝑥- − 𝑘(𝑥-, 𝑋)𝐾1/𝑘(𝑋, 𝑥-)



BO technique: Acquisition Function
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• Guide how input space should be 
explored during optimization

• Combine predicted mean and variance 
from Gaussian Process model

• Probability Improvement (PI)

• Expected Improvement (EI)

• Upper Confidence Bound (UCB)

𝐔𝐂𝐁 𝒙 = 𝝁 𝒙 + 𝜿𝝈(𝒙)
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ML Method: Reinforcement Learning

Environment

Policy

Learning 
algorithm

Policy 
update

Agent

Reward

Action(Change of) 
State

• Learn optimal behavior in an environment 
to obtain maximum reward (e.g., highest 
polarization)

• Agent: controller, determine sampling 
policy
• Action 𝐴: change control values

• Environment: controlled system
• State 𝑆: representation of environment
• Reward 𝑅: numerical evaluation of 

action

• Sequence of experience and agent forms 
trajectory 𝑆2, 𝐴2, 𝑅2 , 𝑆/, 𝐴/, 𝑅/ , ⋯



RL technique: Soft Actor-Critic (SAC)
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• An entropy-based Reinforcement Learning (RL) aims to not only maximize total 
rewards, also to maximize the entropy of the policy

Final objective is weighted between a reward term r and an entropy term H by α

• SAC makes use of three networks: a state value function V parameterized by ψ, a 
soft Q-function Q parameterized by θ, and a policy function π parameterized by ϕ

• We can apply SAC to automatically tune RF phases and voltages so that a 
balanced beam profile can be achieved after bunch merge

𝐽 𝜋 =S
032
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Future: Digital twin and Optimal control
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Control parameters 
+ Environmental 

factors 

Evaluation / Analytic 
Metric (e.g., agreement 

with real measurements)

Digital Twin

AI/ML Methods (RL, BO, etc.)Find best settings 
for desired 

machine state
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