

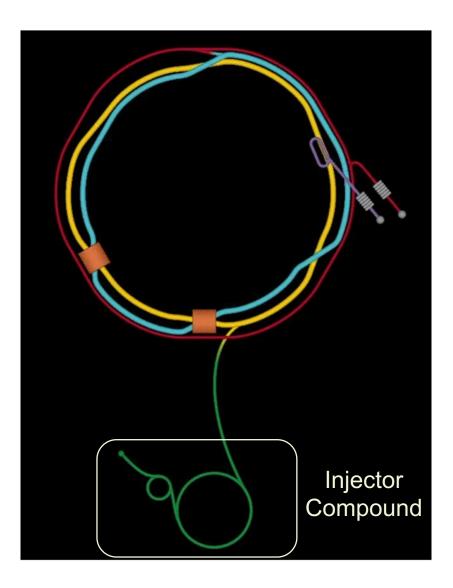
Machine Learning applications for digital twin development and polarization improvement at the BNL hadron injectors

Lucy Lin

Advisor: Georg Hoffstaetter de Torquat (Cornell), Kevin Brown (BNL)

AI4EIC 2023 Annual Workshop Washington D.C., USA Nov 29, 2023

Injector compound for RHIC and EIC

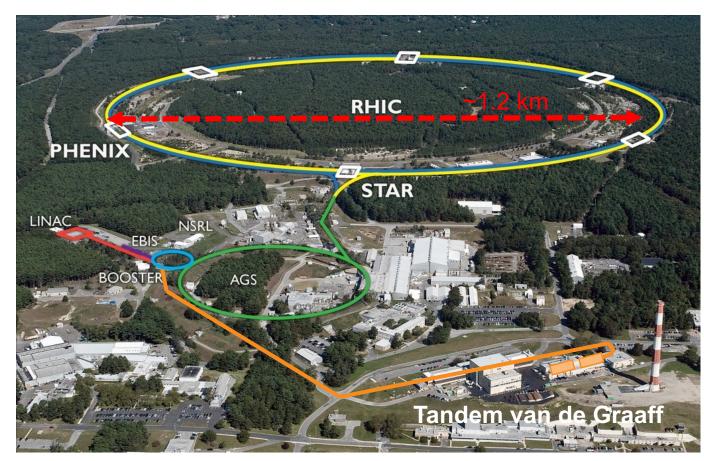


- <u>Relativistic Heavy Ion Collider (RHIC)</u>: largest operating accelerator in the US.
- <u>Electron Ion Collider (EIC)</u>: the nation's largest particle accelerator project.
- <u>Alternating Gradient Synchrotron</u> (AGS) and its <u>Booster</u> serve as part of the <u>injector compound</u> for RHIC and future EIC.
- Bright ion beams in the AGS and Booster are required for optimal luminosity and highest polarization in RHIC and EIC.
- Obtaining bright beam requires <u>more accurate beam</u> <u>control</u> in the injector compound, which is currently mostly hand tuned by operators.

RHIC Accelerator Complex

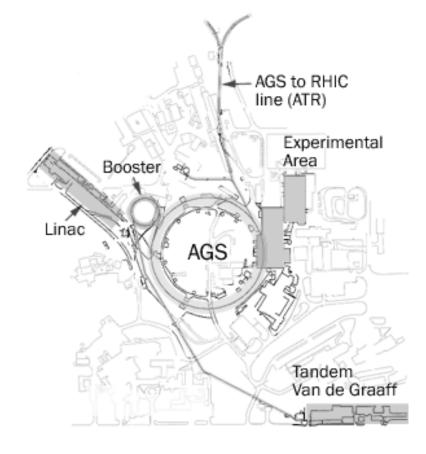
Accelerator Rings		
	Circumference [m]	
Booster	201	
AGS	807	
RHIC	3833	

Typical Top Energies [Total, GeV/N]				
	Au	Pol. Protons		
Linac (H ⁻)		1.1		
Booster	1	2.3		
AGS	10	23.8		
RHIC	100	255		



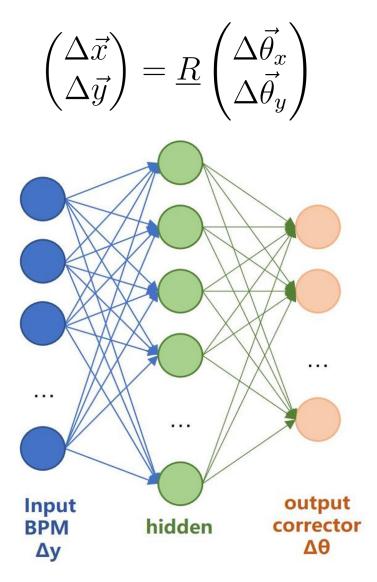
Heavy lons	Protons
E-beam Ion Source (EBIS)	OPPIS (polarized)
Tandem Van de Graaf	High-intensity H ⁻ (unpolarized)

Alternating Gradient Synchrotron (AGS)



- Alternating gradient / strong focusing principle: achieve strong vertical and horizontal focusing of charged particle beam at the same time
- Accelerates proton to 33 GeV in 1960
- 12 super-periods (A to L), 240 main magnets, 810 m circumference
- Now serves as injector for Relativistic Heavy Ion Collider (RHIC)

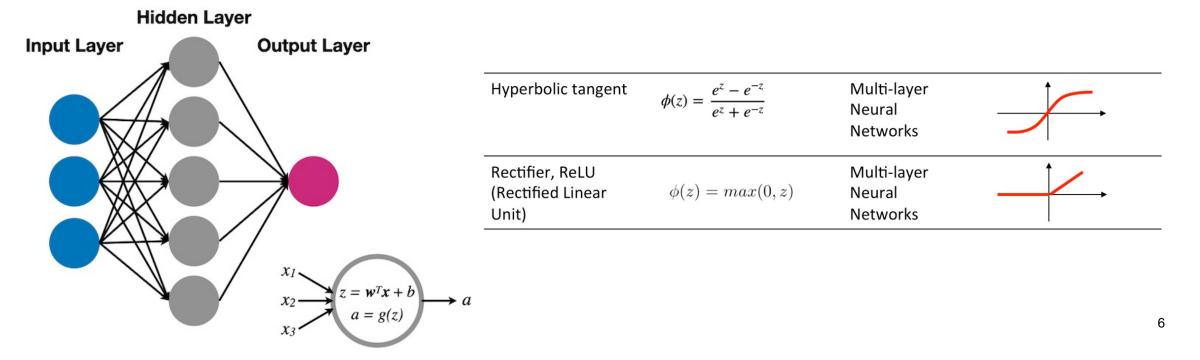
Orbit Correction at the AGS



- Traditional orbit correction
 - obtain mapping <u>R</u> (orbit response matrix) from corrector settings $\vec{\theta}$ to orbit measurements \vec{y}
 - inverse mapping to get corrector settings $\Delta \vec{\theta}$ needed to cancel orbit deviations $\Delta \vec{y}$
- Orbit correction with NN
 - train directly to get inverse mapping, no need for extra calculation
 - easily update with new data and stay accurate

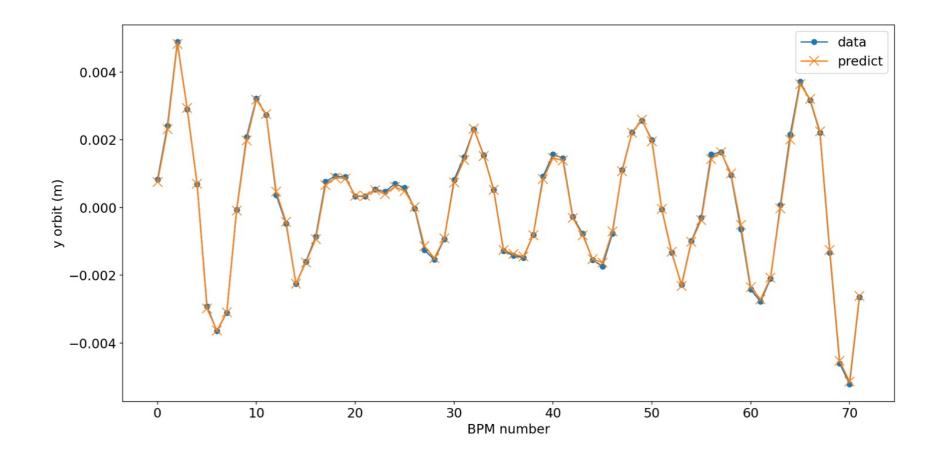
ML method: Neural Network (NN)

- Establish mapping between a given set of inputs \vec{X} and corresponding outputs \vec{Y}
- Fully connected layers: output = activation(dot(input, weight) + bias)
- Activation function: Hyperbolic Tangent (Tanh) and Rectified Linear Unit (ReLU)
- Feed forward neural network (FFNN): most common, no feedback route



AGS ORM NN model: training results

- Input 48 vertical corrector kick \rightarrow Output 72 y orbit measured at BPM
- Trained on 800 data pairs, tested on 200 data pairs: R^2 score = 0.998

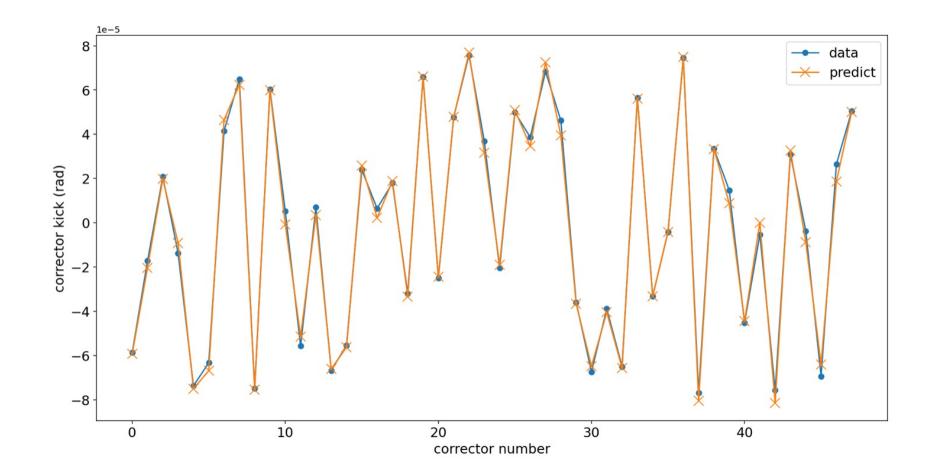


7

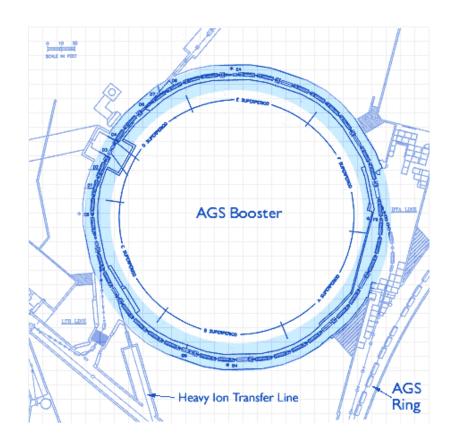
 $R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \overline{y}_{i})^{2}}$

Inverse AGS ORM NN model: training results

- Input 72 y orbit measured at BPM \rightarrow Output 48 vertical corrector kick
- Trained on 800 data pairs, tested on 200 data pairs: R^2 score = 0.993



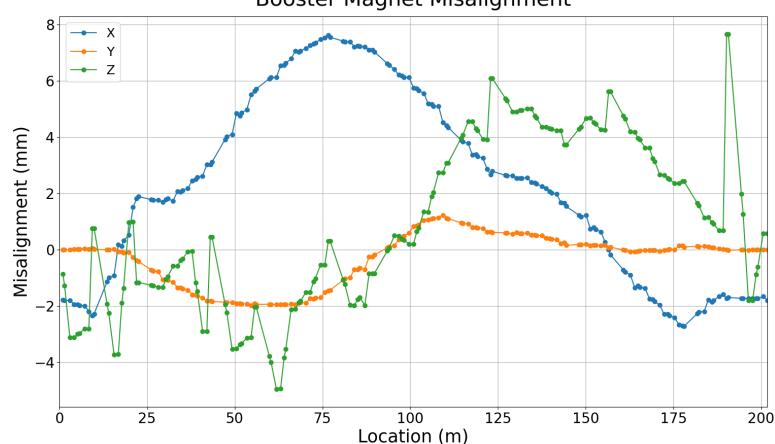
Alternating Gradient Synchrotron (AGS) Booster



- Pre-accelerate particles entering the AGS ring
- Accepts heavy ions from EBIS or protons from 200 MeV Linac
- Serves as heavy ion source for NASA Space Radiation Laboratory (NSRL)
- 6 super-periods (A to F), 72 main magnets

Booster magnet misalignment

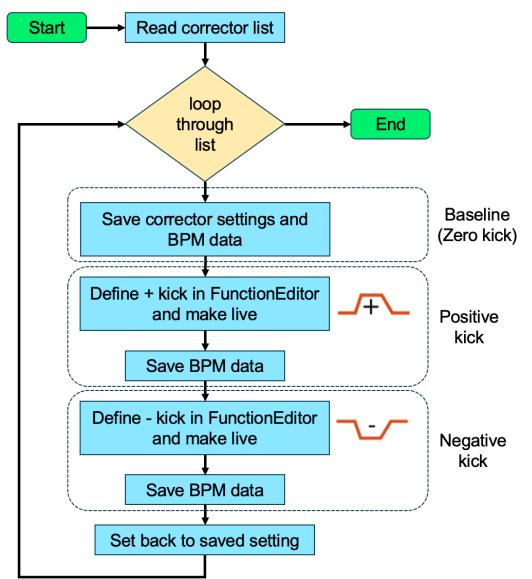
- Magnet location in real machine from 2015 survey data
- Misalignment data for quadrupoles and dipoles
- Trouble with making physics simulation with misalignment agree with real orbit data ٠



Booster Magnet Misalignment

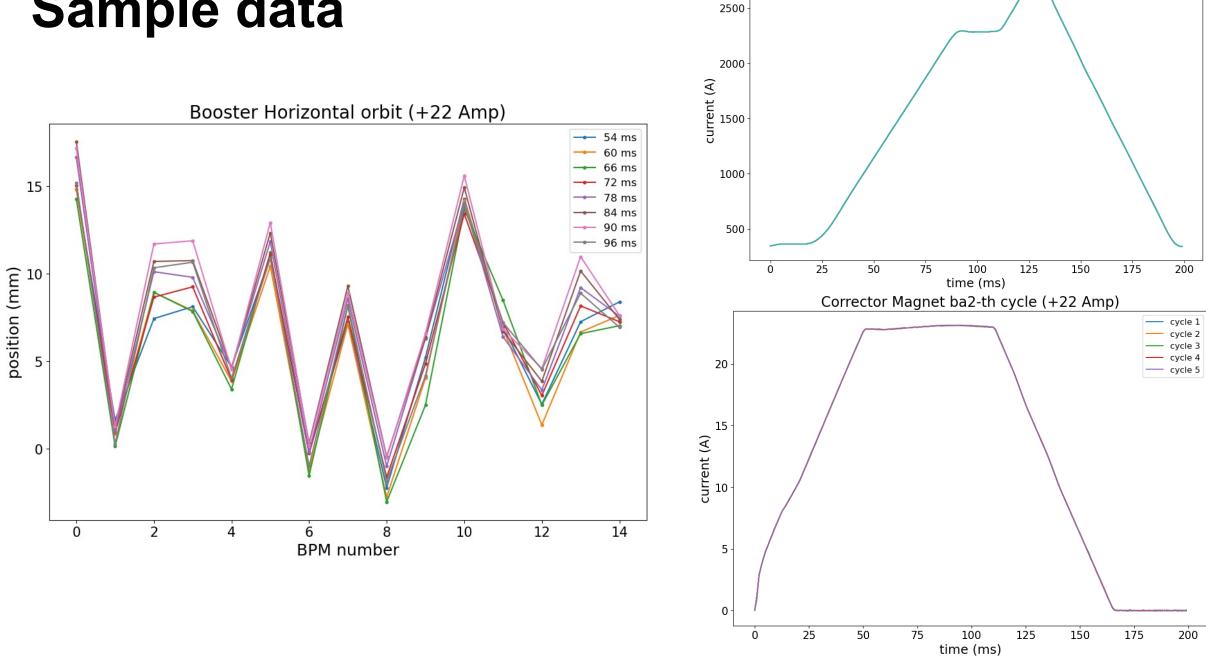
Script to get Booster orbit responses

- Script development with Collider Accelerator Department (CAD) Controls Group
- FunctionEditor: send trapezoid-like timedependent function to corrector power supplies
- Script sets three corrector settings: positive, zero, negative; and save corresponding orbits



11

Sample data



Booster Main Magnet cycle

Booster model calibration

$$\begin{pmatrix} nodel \\ (I_{quad}, I_{corr}, \theta) & \Leftarrow = = \Rightarrow \end{pmatrix} \begin{pmatrix} (I_{quad}^{(1)}, I_{corr}^{(1)}) \\ X_{BPM}^{(I_{quad}^{(1)}, I_{corr}^{(2)})}, X_{BPM}^{(I_{quad}^{(2)}, I_{corr}^{(2)})}, \cdots \end{pmatrix}$$

- Control: power supply currents of quadrupoles and correctors
- Parameter θ: parameters that affect the orbit but not in our control → (magnet misalignments, magnet transfer functions, etc.)
- Output: orbit at the BPMs with certain current configuration
- Invert from measured BPM data to simulation model parameters
- Update beliefs on model parameters with real data → calibrated model m ("digital-twin") can be used to optimize beam quality (objective F)

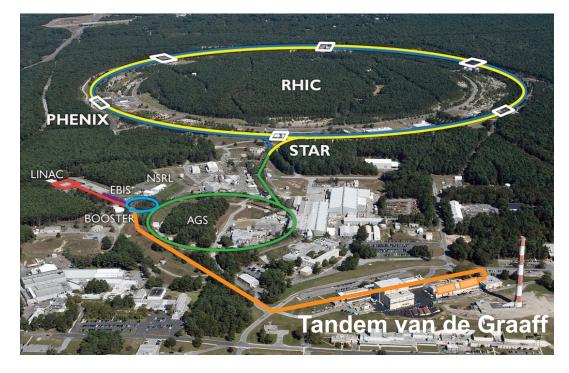
$$X_{BPM} = m(I_{quad}, I_{corr}; \theta) + \epsilon, \qquad \epsilon \sim N(0, \sigma)$$
$$I_{quad}^*, I_{corr}^* = \operatorname{argmax} F(m(I_{quad}, I_{corr}; \theta))$$

Polarization at RHIC

	Max Energy [GeV]	Pol. At Max Energy [%]	
Source+Linac	1.1	82-84	
Booster	2.5	~80-84	
AGS	23.8	67-70	p-Carbon
RHIC	255	55-60	Jet, full store avg*

Loss in polarization along the chain

	Relative Ramp Polarization Loss (Run 17, full run avg)
AGS	17 %
RHIC	8 %



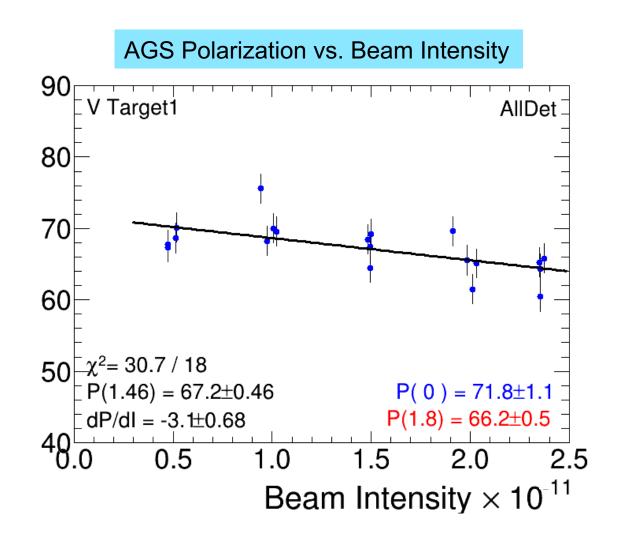
Polarimetry available at:

- Source
- End of Linac (200 MeV)
- AGS extraction
- RHIC injection energy
- RHIC flattop

No Booster polarimeter

Improve Polarization at RHIC

- Figure-of-merits (FOM) for the project ("experimental outputs"): emittance, beam intensity, polarization
- Trade-offs in optimizing **FOMs**:
 - Emittance J Beam intensity 1 Polarization 1
- Trade-offs between controls:
 - Beam intensity $\uparrow \rightarrow$ Emittance \uparrow
 - Emittance $\uparrow \rightarrow$ Polarization \downarrow
- Main areas to optimize:
 - Booster injection / capture
 - AGS bunch splitting / merging scheme
 - AGS spin resonance compensation



Polarization Improvement workflow

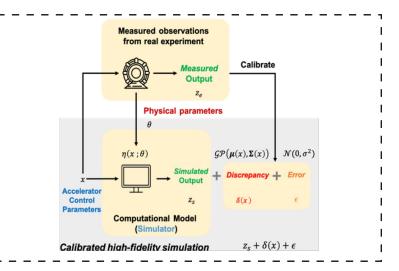
Data-model Integration

- Solve inverse problem for unknown model parameters
- Learn data-driven model for additional discrepancy

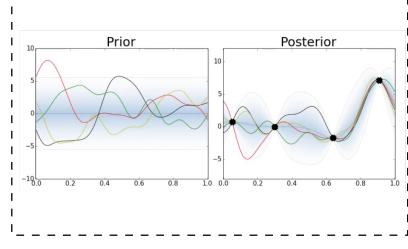
Scientific Machine Learning

- Include constraints for physics processes in surrogate model training
- "Soft" constraints as an objective penalty

- **Optimization under Uncertainty**
 - Bayesian optimization simultaneously trains a surrogate and identifies a maximum function evaluation

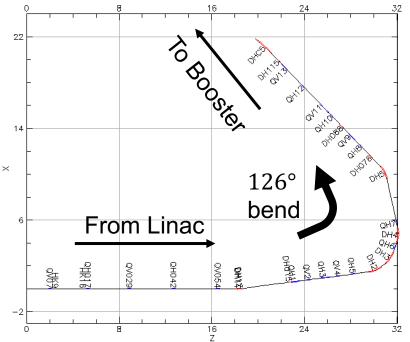


Optimization with linear constraints $min_{x \in D_x} f(x)$ s.t. $c_r(x) \le 0$ $\forall r \in [1, ..., R]$ Objective and constraints as GPs $f(x) \sim \mathcal{GP}(\mu, \Sigma)$ and $c_r(x) \sim \mathcal{GP}(\mu_r, \Sigma_r)$ Integrate the feasibility through the CDF $cEI(x) = EI(x) \times \prod_{r=1}^{R} \Phi(\frac{\mu_r}{\sigma_r})$



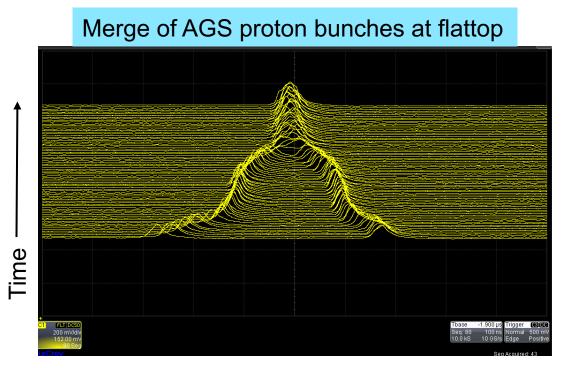
Planned project: Booter injection/capture

- Booster injection/early acceleration process sets maximum beam brightness for rest of acceleration though RHIC
- Linac pulse of 300 us, H⁻ beam ~6-9x10¹¹ protons, strip through a carbon foil
- Intentional horizontal and vertical scraping reduce emittance (and intensity) to RHIC requirements ~2.5x10¹¹ protons
- Goal: minimize beam loss at scraper
- Controls: Linac to Booster (LtB) transfer line optics
- Method: Bayesian Optimization



Planned project: AGS bunch splitting/merging

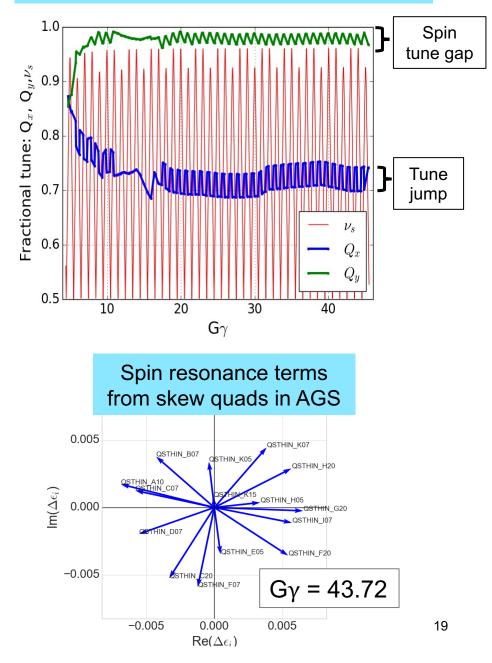
- Normal operation: One Linac pulse is captured as one bunch in the Booster and remains one bunch in AGS and RHIC
- Peak current (space charge) at AGS injection can be reduced by splitting the bunch into 2 longitudinally in Booster before transferring to AGS
- Bunches are later merged at AGS extraction
 - Requires expert tuning of many parameters, often done 'by eye'
 - Prone to drift over time
- Goal: minimize longitudinal emittance
- Controls: RF voltages, phases
- Method: Reinforcement Learning



Planned project: AGS resonance compensation

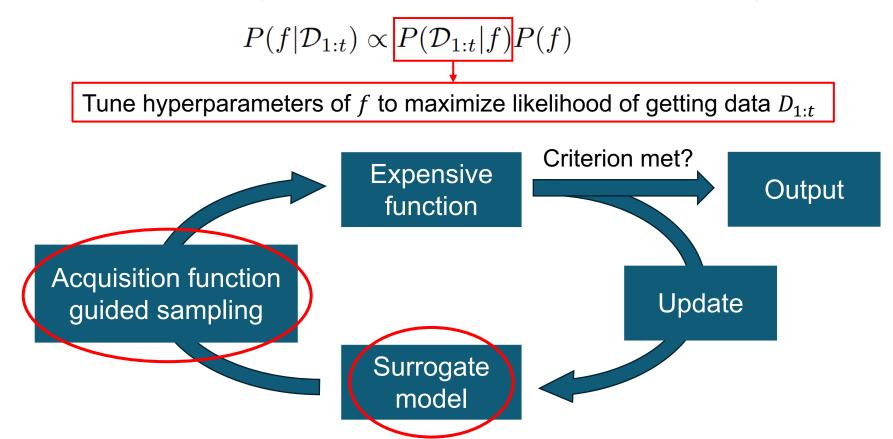
- Partial snakes in the AGS keep the spin tune away from the integer (>0.96), avoiding vertical resonances
- Horizontal resonances remain, currently 'jumped' by moving the horizontal tune through the resonance
 - Each resonance is weak (~0.1% polarization loss)
 - But there are many of them (82)
- Proposal to use 15 pulsed skew quadrupoles to eliminate residual resonances
- Goal: minimize resonance strengths
- Controls: skew quadrupole currents
- Method: Reinforcement Learning / Bayesian Optimization (to be explored)

Betatron and spin tunes during AGS ramp



ML Method: Bayesian Optimization

- A powerful tool for finding the extrema of objective functions that are expensive to evaluate
- Bayes' theorem: probability of event based on previous knowledge of conditions



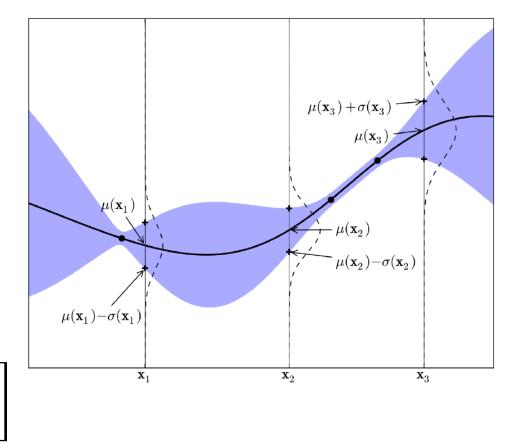
BO technique: Gaussian Process

- A probability distribution over possible functions that fit a set of points
- Mean function + Covariance function

 $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x'}))$

• Kernel: covariance function $k(x_i, x_j)$ of the input variables

• Covariance matrix $K = k(X, X) = \begin{bmatrix} k(x_1, x_1) & \cdots & k(x_1, x_t) \\ \vdots & \ddots & \vdots \\ k(x_t, x_1) & \cdots & k(x_t, x_t) \end{bmatrix}$

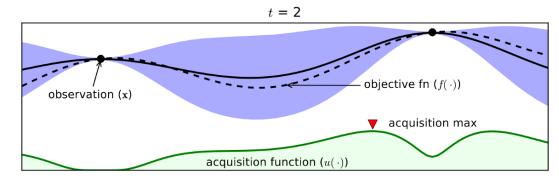


• At a sample point x_i , Gaussian process returns mean $\mu(x_i|X) = m(x_i) + k(x_i, X)K^{-1}(f(X) - m(X))$ and variance $\sigma^2(x_i|X) = k(x_i, x_i) - k(x_i, X)K^{-1}k(X, x_i)$

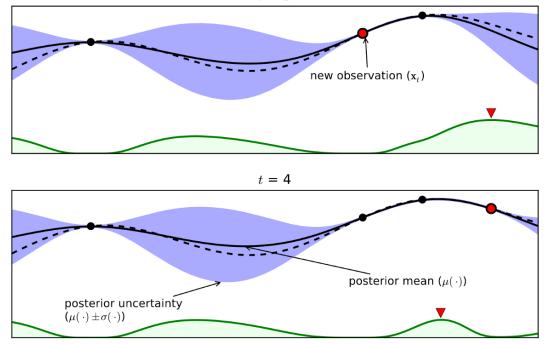
BO technique: Acquisition Function

- Guide how input space should be explored during optimization
- Combine predicted mean and variance
 from Gaussian Process model
 - Probability Improvement (PI)
 - Expected Improvement (EI)
 - Upper Confidence Bound (UCB)

 $UCB(x) = \mu(x) + \kappa \sigma(x)$

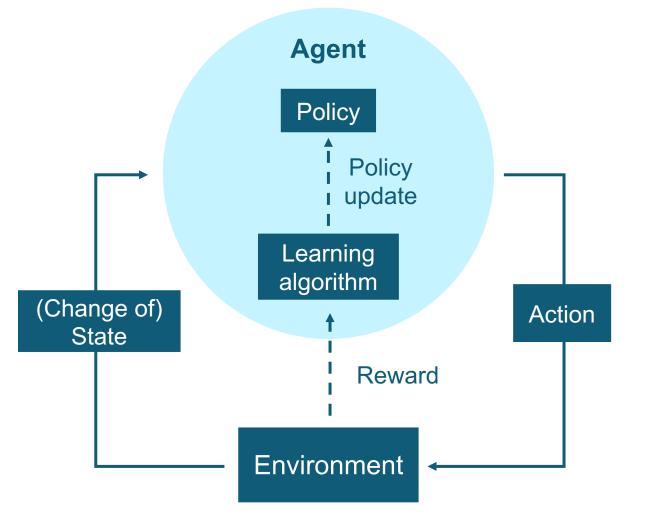


t = 3



ML Method: Reinforcement Learning

- Learn optimal behavior in an environment to obtain maximum reward (e.g., highest polarization)
- Agent: controller, determine sampling policy
 - Action *A*: change control values
- Environment: controlled system
 - State *S*: representation of environment
 - Reward R: numerical evaluation of action
- Sequence of experience and agent forms trajectory $(S_0, A_0, R_0), (S_1, A_1, R_1), \cdots$



RL technique: Soft Actor-Critic (SAC)

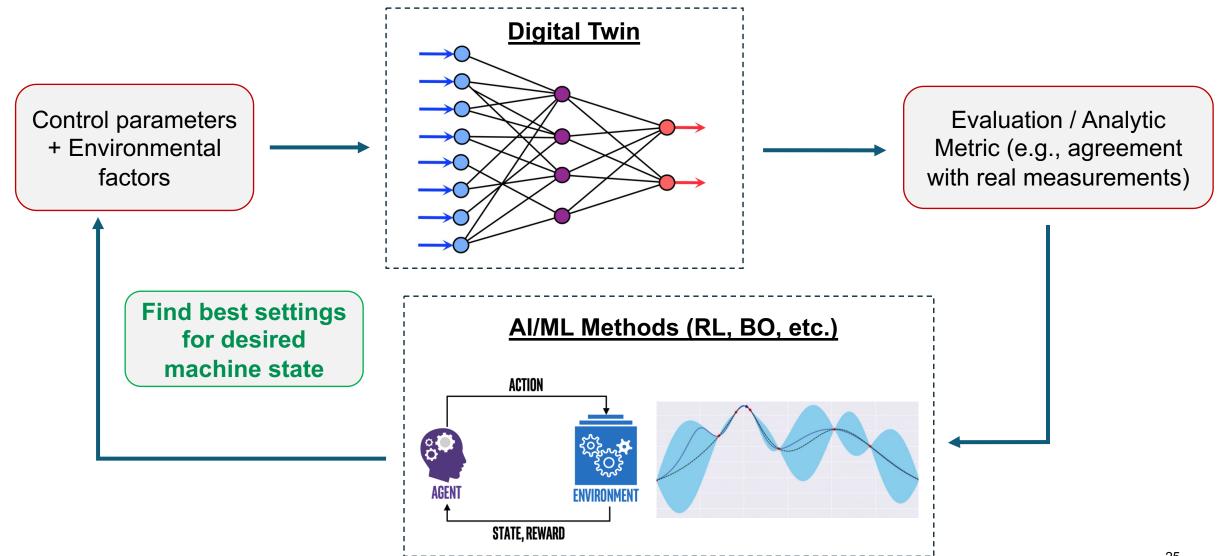
 An entropy-based Reinforcement Learning (RL) aims to not only maximize total rewards, also to maximize the entropy of the policy

$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right]$$

Final objective is weighted between a reward term r and an entropy term H by α

- SAC makes use of three networks: a state value function V parameterized by ψ, a soft Q-function Q parameterized by θ, and a policy function π parameterized by φ
- We can apply SAC to automatically tune RF phases and voltages so that a balanced beam profile can be achieved after bunch merge

Future: Digital twin and Optimal control



- Kevin Brown, Yuan Gao, Levente Hajdu, Kiel Hock, Natalie Isenberg, Linh Nguyen, Vincent Schoefer, Nathan Urban, Keith Zeno
- Eiad Hamwi, Georg Hoffstaetter de Torquat, David Sagan •

Stony Brook University • Weining Dai, Bohong Huang, Thomas Robertazzi

Yinan Wang ٠

Auralee Edelen

Malachi Schram