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In this talk
I hope to convey how Hadronization is a complicated and worthwhile target 
with a two part talk:

- Brief introduction to Hadronization.
- Efforts to apply ML to Hadronization

This talk is mostly based on arxiv:2203.04983,  arxiv:2311.09296 and ongoing 
preliminary work.
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Hadronization at colliders
Image from Pythia 8.3 manual

The radial coordinate is time

or 1/energy scale.

Hard process dσ, perturbatively 
calculated. Partons hidden to 
experiment.

Perturbative evolution from hard to 
hadronization scale, also 
perturbative. Hidden to experiment

Hadronization: combining partons 
into hadrons. Non perturbative. 
Hadrons can be measured 
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Modeling hadronization
Hadronization is a inherently non-perturbative process → Empirical models for predictions.

Two main models: the Lund String model (Pythia) and the Cluster model (Herwig). 

Lund String Model: Colored singlets + ~20 parameters → Hadrons
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Each hadron is characterized by its 
four-momenta and its flavour. Translated 
into three variables of interest:  z, pT, 
flavour.

Simplified example from arxiv:2203.04983.



However…
Tuned Pythia is very successful.  
However, we are pushing the 
models to their limits. 

Collective effects in general are 
tricky to recover e.g. heavy baryon 
production at high event 
multiplicities as in 
arxiv:1807.11321. 
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Machine Learning to the rescue?
Complex problem with no full model flexible enough and where training is 
expensive? → Machine Learning should be really useful here!

A lot of possible ways to attack this problem. The richness of the involved 
physics forbids the use of any plug-and-play algorithms.

Two groups have recently tackled the subject: MLHAD (arxiv:2203.04983, 
arxiv:2311.09296) and HADML (arxiv:2203.12660, arxiv:2305.17169). Different 
generators (Pythia, Herwig) and different architectures (cSWAE,BNF, GAN) 
with different degrees of implementation.
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Learning the Lund Fragmentation model
First task: learn the Lund String first hadronization pdfs for
at various energies. Checks feasibility of the problem. 

Introduce inductive bias. Improve over the existing empirical model by first 
mapping it to a learnable model.

The first hadronization pdf can be iteratively applied to get a full chain.
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Normalizing Flows
A normalizing flow relates a 
variable z with known, simple pdf 
to the observed data x. If flexible 
enough, the flow allows to sample 
and infer with exact likelihood.

Our baseline choice of NF is a 
Masked Autoregressive Flow (MAF) 
with Real Non-Volume Preserving 
(RealNVP) transformations.
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Normalizing Flows for the Lund fragmentation
We train a NF on first hadronization 
data with only pions and learn the 
two-dimensional distribution while 
conditioning on the transverse mass 
mT → adaptable to different flavors

We show here how the NF learns the 
appropriate Lund distribution with 
its complicated relation between mT 
and pz. 
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Obtaining a full chain
Fragmentation chain of Nh successive hadronizations. We recover the probabilistic 
distribution of the chain length conditioned on the initial energy of the string.
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Learning with uncertainties
Any hadronization model should be able to deal in different uncertainties:

- Training uncertainties due to finite sample size of the training dataset 
and the bias of the model

- Data uncertainties inherent to the training data, ie systematic effects

Even for the well established Lund String model, obtaining the uncertainties 
on the parameters and translating them to observables is complicated

Can ML be a more natural way of working with uncertainties?
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Bayesian Normalizing Flows
We deploy a BNF to capture the training error. We still train on first hadronization 

but now we capture a family of distributions
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The BNF captures 
the underlying 
distribution.

The uncertainty is 
always higher than 
the Poisson 
uncertainty due to 
the additional 
training error. 



Bayesian Normalizing Flows
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The training uncertainty becomes the limiting factor after a certain 
generated size (which depends on the quality of training).



Systematic Uncertainties
We capture systematic 
uncertainties by conditioning 
during training.

We propagate these 
uncertainties through 
reweighting using the exact 
learned likelihood.
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Learning from data: MAGIC
However, the end-goal is to learn a 
better model from data.

We propose a new strategy, called 
Microscopic Alterations Generated 
from Infrared Collections. It is a 
two-step procedure
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MAGIC

We compare the original learned model 
(base) with the target (here 
pseudo-data from Pythia with different 
parameters) and obtain a new model 
(tuned)
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MAGIC

Because we are reweighting in terms 
of the underlying hadronizations, we 
obtain a new hadronization model!

Here we worked only with pz. For 
{pT,pz}, we need more observables to 
break degeneracies.
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Next steps:
We need to properly characterize how MAGIC scales with the number of 
generated events and the dimensionality of the high-level observables.

Also, we still need to think about incorporating other string topologies and 
different physical constraints that the model should obey.

We also need to incorporate errors into MAGIC. Hopefully this yields better 
models with calibrated errors.
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Conclusions
Hadronization is the type of problem you dream of if you want to work in ML for 
HEP: physically meaningful and complicated enough that it is not simply a case of 
plug-and-play with any ML algorithm.

The variety of colour topologies and correlations between hadronizations pose a 
challenge to represent in an appropriate manner for any learnable algorithm.

Training itself is an issue! Developments in Simulation Based Inference and Nested 
Sampling could be really useful. 

Any developments can also impact existing tuning efforts and uncertainty 
estimations (see supplemental material for an example). 

This is very much an open problem, so feedback is necessary!
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The MLHAD team
Christian Bierlich, Phil Ilten, Tony Menzo, Stephen Mrenna, Manuel Szewc, 

Michael Wilkinson, Ahmed Youssef, and Jure Zupan
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Thanks!
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Backup slides



Momentum space for finding next hadronization
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Limitations of the Lund String model

O(20%) to O(50%) discrepancies between proton-proton and ion-ion collisions

Heavy particle composition as a function of event multiplicity is mismodelled at 
high event multiplicities

Mismodelling of the mass dependence of the average transverse momentum

Minimum bias description can be incompatible because of low transverse 
momentum mismodelling

Ridge in pp collisions missing in Pythia (and in general long range correlations are 
hard to model)

Charged particle multiplicity spectrum is very sensitive to color reconnections and 
MPI modelling
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Impact of model architecture
We scan over possible models.

For models that are too 
simple, the uncertainty is 
artificially low because the 
posterior collapses to a delta 
function.

For models that are too 
complex, the uncertainty 
increases because there are 
not enough constraints.
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Too simple
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Complex enough
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conditional Sliced Wasserstein AE

Traditional Auto-Encoder with a key 
difference: go from Gaussian latent space 
to more flexible distribution. 

Achieved through the Sliced Wasserstein 
method for pdf distance computation. 

The energy of the string enters as a 
condition vector.
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Probabilistic generative models are known to obtain convincing physical 
observables from limited datasets while retaining flexibility and control of 
the output.



Training settings
N = 4x105 events

80% training, 20% 
validation

Saved in lists of a 100 
events (→ 4000 
"events")
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Learning Pythia

cSWAE learns the pz 
and pT spectrum for 
different string 
energies and different 
pdfs in the latent 
space.
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Obtaining a full chain
Fragmentation chain of N successive hadronizations. cSWAE recovers the probabilistic 
distribution of the chain length conditioned on the initial energy of the string.
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Obtaining a full chain
Fragmentation chain of N successive hadronizations.
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Limitations
cSWAE has only been trained in each variable separately and only for 
simple strings producing pions.

It assumes no correlation between hadronization steps.

Not a single hadronization generator: generate a batch and have to 
post-process them for a single chain generation.

Valid until a certain energy Ecut

However, keep in mind this is a first crack at a very complicated problem.
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Calibrated Simulation-Based Inference with WALDO
Introduced by L. Masserano, T. Dorigo, R. Izbicki, M. Kuusela, A. B. Lee in 
arxiv:2205.15680

Solve the inverse problem of estimating a posterior or confidence intervals 
on simulator parameters 𝜃 given an observed dataset X

It does so by building a test statistic 𝜏 which converges to the Wald test 
statistic. This statistic and its distribution are obtained through simulations + 
training of three sets of ML estimators.

The main takeaway is it provides a way of fitting our reweighting function 
to data with appropriate uncertainties.
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Calibrated Simulation-Based Inference with WALDO
Introduced by L. Masserano, T. Dorigo, R. Izbicki, M. Kuusela, A. B. Lee in 
arxiv:2205.15680. Fig. from the original paper:
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Calibrated Simulation-Based Inference with WALDO
Before going full NN let’s implement WALDO as a Pythia tuner. Pythia tunes 
are usually done with Professor (both by itself or with ML-enhancements 
Apprentice). Bayesian frameworks have also been explored. Usually very 
daunting task

Let’s see how we deal with the data used to tune pT and pz distributions for 
light flavors

We choose the same set of observables used for the standard Monash Tune: 
LEP Z→hadrons, event shapes and charged hadron properties

We want to tune σQ,aLund, bLund as a proof of concept
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Calibrated Simulation-Based Inference with WALDO

Uncertainties in training data → Already an interesting challenge. We incorporate 
them with explicit and implicit data augmentation.  

Explicit: resample according to uncertainties. Implicit: resample for each pass using 
a probabilistic layer (in some sense similar to Dropout). More memory efficient
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Calibrated Simulation-Based Inference with WALDO

Mean Estimation is not perfect. Model can be biased!

Variance estimation is also very tricky (usually very small) but if done well can 
overcome the bias by producing larger confidence intervals.
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As a self-consistency check, we 
recover the Monash parameters.

If training is done correctly, 
WALDO guarantees proper 
uncertainties with correct 
coverage.

This is already useful for Pythia 
itself

39

Calibrated Simulation-Based Inference with WALDO

*PRELIMINARY*



Calibrated Simulation-Based Inference with WALDO
We perform the coverage 
diagnostics

Appropriate coverage is 
achieved. This is a very 
important feature of WALDO → 
not only can we train, we can 
obtain meaningful uncertainties
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Next steps
- Do full calibration of pT and pz sector (4 additional parameters which 

control heavy quark and diquark cases)
- Replace Lund function with a learnable estimator with manageable set of 

(hyper)parameters
- Deal with discrete flavor parameters → different approach needed?
- Take advantage of reweighting to get larger datasets
- Do all of this with available data (already started for the three parameter 

case + LEP data)
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Next directions: Observable choices
Definition of better observables for training. We need observables sensitive to 
differences in the hadronization models
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