Unfolding: Machine Learning Approaches

Benjamin Nachman

Lawrence Berkeley National Laboratory
bpnachman.com bpnachman@lbl.gov

BERKELEY INSTITUTE FOR DATA SCIENCE

AI4EIC
Nov. 2023

Unfolding

Deconvolution ("unfolding"): correcting for detector effects

Unfolding

Deconvolution ("unfolding"): correcting for detector effects

Key aspect of all cross section measurements, across particle/ nuclear/astro physics (!)

Unfolding

Proton-Proton

PH棌ENIX
Nucleus-Nucleus

ICECLBE

$\mu \mathrm{BooNE}$
Neutrino-Nucleus

Particle/Nuclear/Astro Physics Experiments

Deconvolution ("unfolding"): correcting for detector effects

Key aspect of all cross section measurements, across particle/ nuclear/astro physics (!)

Unfolding

Proton-Proton

ALICE
PH米ENIX
Nucleus-Nucleus
Icecube

μ BooNE
Neutrino-Nucleus

Deconvolution ("unfolding"): correcting for detector effects

Key aspect of all cross section measurements, across particle/ nuclear/astro physics (!)

Why "unfold" instead of "fold"?
Unfolding is ill-posed, BUT only way to compare different experiments and to compare with non fully exclusive predictions. Data also survive much longer.

The Unfolding Challenge

The Unfolding Challenge

Want this

The Unfolding Challenge

Measure this

Want this

The Unfolding Challenge

Measure this

Want this

$$
\hat{T} \approx R^{-1} M
$$

 observables \& discretize into $O(10)$ bins

Why unbinned (+high-dimensional)?

For a community white paper, see JINST 17 (2022) P01024, 2109.13243

Why unbinned (+high-dimensional)?

Inference-Aware Binning

Optimal binning depends on downstream task. Not possible with current setup.
What about moments?
(see also K. Desai, BPN, J. Thaler, [paper])

Why unbinned (+high-dimensional)?

Inference-Aware Binning

Optimal binning depends on downstream task. Not possible with current setup.

What about moments?
(see also K. Desai, BPN, J. Thaler, [paper])

Derivative Measurements

With binned measurements, essentially impossible to reuse results for a function of the phase space.

Why unbinned (+high-dimensional)?

Inference-Aware Binning

Optimal binning depends on downstream task. Not possible with current setup.

What about moments?
(see also K. Desai, BPN, J. Thaler, [paper])

Higher Dimensions

Some phenomena can't be probed in a few dimensions.

What about observables that are not per-event?

Derivative Measurements

With binned measurements, essentially impossible to reuse results for a function of the phase space.

Landscape of Methods

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation

Landscape of Methods

Classifier-Based Methods
Learn (unfolded) data likelihood ratio w.r.t. simulation

Density-Based Methods
Learn (unfolded) data probably density implicitly or explicitly.

Landscape of Methods

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation

Density-Based Methods

Learn (unfolded) data probably density implicitly or explicitly.

I'll focus here today because:
Learn a small correction (start close to the right answer)
\&
~prior independent
(if maximum likelihood)

Landscape of Methods

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation

I'll focus here today because:
Learn a small correction (start close to the right answer)

> \&
~prior independent
(if maximum likelihood)

Density-Based Methods

Learn (unfolded) data probably density implicitly or explicitly.

I won't talk about these at all, but there has been a lot of work with GANs, VAEs, NFs, Diffusion...

GANs: K. Datta, D. Kar, D. Roy, 1806.00433;
M. Bellagente, A. Butter, G. Kasieczka, T. Plehn,
R. Winterhalder, SciPost Phys. 8 (2020) 070,

VAEs: J. Howard, S. Mandt, D. Whiteson, Y. Yang, Sci. Rep. 12 (2022) 7567, ...

NFs: M. Bellagente et al., SciPost Phys. 9 (2020) 074;
M. Vandegar, M. Kagan, A. Wehenkel, G. Louppe, PMLR 11 (2021) 2107; M. Backes, A. Butter, M. Dunford, B. Malaescu, 2212.08674,

Diffusion: A. Shmakov et al., 2305.10399;
S. Diefenbachar, G. Liu, V. Mikuni, B. Nachman, W. Nie, 2308.12351

Landscape of Methods

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation

I'll focus here today because:
Learn a small correction* (start close to the right answer)

> \&
~prior independent
(if maximum likelihood)

Density-Based Methods

Learn (unfolded) data probably density implicitly or explicitly.

I won't talk about these at all, but there has been a lot of work with GANs, VAEs, NFs, Diffusion...

GANs: K. Datta, D. Kar, D. Roy, 1806.00433;
M. Bellagente, A. Butter, G. Kasieczka, T. Plehn,
R. Winterhalder, SciPost Phys. 8 (2020) 070,

VAEs: J. Howard, S. Mandt, D. Whiteson, Y. Yang, Sci. Rep. 12 (2022) 7567, ...

NFs: M. Bellagente et al., SciPost Phys. 9 (2020) 074;
M. Vandegar, M. Kagan, A. Wehenkel, G. Louppe, PMLR 11 (2021) 2107; M. Backes, A. Butter, M. Dunford, B. Malaescu, 2212.08674,

Diffusion: A. Shmakov et al., 2305.10399;
S. Diefenbachar, G. Liu, V. Mikuni, B. Nachman, W. Nie, 2308.12351

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)

Landscape of Methods

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation

I'll focus here today because:
Learn a small correction (start close to the right answer)
\&
~prior independent
(if maximum likelihood)

My focus will be on a method called OmniFold.

A brief introduction to OmniFold

Pull
Weights

A brief introduction to OmniFold

A brief introduction to OmniFold

A brief introduction to OmniFold

Detector-level

Step 1:
Reweight Sim. to Data

Simulation

Particle-level

Step 2:
Reweight Gen.

Pull
Weights

Full phase-space unfolding

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

Measured

Ideal

Full phase-space unfolding

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

Full phase-space unfolding

OmniFold is:

- Unbinned
- Maximum likelihood*
- Improves the resolution from correlations with detector response
*when binned, OmniFold converges to LucyRichardson (aka Iterative Bayesian Unfolding)

In fact, OmniFold can also work on low-level inputs (e.g. energy flow particles). In that case, you can construct observables after the measurement.

Some technical details

Please ask if you are interested, but briefly, OmniFold...

- Can accommodate backgrounds (unbinned) via neural positive reweighing
- Can accommodate acceptance effects
- Has a number of choices for how to update weights and/or keep track of acceptance effects
https://github.com/hep-lbdl/OmniFold

First Results

I'll now spend $a \sim 1$ minute flashing the first unbinned measurement results

There is no time to give the physics content justice, so l'll be brief, but please let me know if you have any questions!

Results from H1, LHCb, STAR, ...

New methods for unbinned unfolding are here! We should be ready to use them also for BSM!

+CMS open data study

Future + challenges

So far, OmniFold seems to work as designed! Exciting to see where this will take us.

There are still some challenges we need to overcome:

- OmniFold is computationally expensive (need to train many networks, especially with ensembling to reach precision)
- How to publish an unbinned result? (all results so far are presented as binned) - see 2109.13243. Breaks HEPData!
- Modeling/closure uncertainties in high dimensions (not a new problem, but perhaps more acute)
- What about profiling? See 2302.05390 for a partial solution.

Conclusions and Outlook

A new measurement paradigm is possible, enabled by ML-based unfolding methods

We can analyze our data holistically and future-proof it using unbinned techniques

More R\&D is required, but in parallel, these tools are already

Reweighting

How do to the reweighting without binning?

Reweighting

How do to the reweighting without binning?
dataset 1: sampled from $p(x)$
dataset 2: sampled from $\boldsymbol{q}(\boldsymbol{x})$

Create weights $\boldsymbol{w}(\boldsymbol{x})=\boldsymbol{q}(\boldsymbol{x}) / \boldsymbol{p}(\boldsymbol{x})$ so that when dataset 1 is weighted by \boldsymbol{w}, it is statistically identical to dataset 2.

What if we don't (and can't easily) know \boldsymbol{q} and \boldsymbol{p} ?
(and don't want to estimate them by binning)

Classification for reweighting

Fact: Neutral networks learn to approximate the likelihood ratio $=q(x) / p(x)$
(or something monotonically related to it in a known way)
Solution: train a neural network to distinguish the two datasets!

This turns the problem of density estimation (hard) into a problem of classification (easy)

Neural reweighing: works very well!

StringZ: aLund
- Unweighted
StringFlav:probStoUD
- Weighted

Full phase-space reweighing using simulated $e^{+} e^{-}$

Works even when the differences are small (left) or localized (right).

These are histogram ratios for a series of one-dimensional observables

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

After iteration 1

Ideal

Unfold by iterating: OmniFold

After iteration 1

Ideal

Unfold by iterating: OmniFold

After iteration 1

Ideal

Unfold by iterating: OmniFold

After iteration 1

Ideal

Unfold by iterating: OmniFold

After iteration 1

Ideal

Unfold by iterating: OmniFold

After iteration 2

Unfold by iterating: OmniFold

After iteration ∞

