ym minour opuoor

Unfolding Machine Learning A

	Convolution	Max-Pool
Jet Image		

Benjamin Nachman

Lawrence Berkeley National Laboratory

bpnachman.com bpnachman@lbl.gov

ws for an image-

AI4EIC Nov. 2023

Deconvolution ("unfolding"): correcting for detector effects

Deconvolution ("unfolding"): correcting for detector effects

Key aspect of all cross section measurements, across particle/ nuclear/astro physics (!)

Deconvolution ("unfolding"): correcting for detector effects

Key aspect of **all cross section** measurements, across particle/ nuclear/astro physics (!)

Deconvolution ("unfolding"): correcting for detector effects

Key aspect of **all cross section** measurements, across particle/ nuclear/astro physics (!)

Why "unfold" instead of "fold"?

Unfolding is ill-posed, BUT only way to compare different experiments and to compare with non fully exclusive predictions. Data also survive much longer.

The Unfolding Challenge

2203.16722

The Unfolding Challenge

Particle

Level

2203.16722

Inference-Aware Binning

Optimal binning depends on downstream task. Not possible with current setup.

What about moments? (see also K. Desai, BPN, J. Thaler, [paper])

Inference-Aware Binning

Optimal binning depends on downstream task. Not possible with current setup.

What about moments? (see also K. Desai, BPN, J. Thaler, [paper])

Derivative Measurements

With binned measurements, essentially impossible to reuse results for a function of the phase space.

Inference-Aware Binning

Optimal binning depends on downstream task. Not possible with current setup.

What about moments? (see also K. Desai, BPN, J. Thaler, [paper])

Higher Dimensions

Some phenomena can't be probed in a few dimensions.

What about observables that are not per-event?

Derivative Measurements

6

With binned measurements, essentially impossible to reuse results for a function of the phase space.

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation **Density-Based Methods**

Learn (unfolded) data probably density implicitly or explicitly.

19

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation

I'll focus here today because:

Learn a small correction (start close to the right answer)

&

~prior independent (if maximum likelihood)

Density-Based Methods

Learn (unfolded) data probably density implicitly or explicitly.

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation

I'll focus here today because:

Learn a small correction (start close to the right answer)

&

~prior independent (if maximum likelihood)

Density-Based Methods

Learn (unfolded) data probably density implicitly or explicitly.

I won't talk about these at all, but there has been a lot of work with GANs, VAEs, NFs, Diffusion...

GANs: K. Datta, D. Kar, D. Roy, 1806.00433; M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, R. Winterhalder, SciPost Phys. 8 (2020) 070, ...

VAEs: J. Howard, S. Mandt, D. Whiteson, Y. Yang, Sci. Rep. 12 (2022) 7567, ...

NFs: M. Bellagente et al., SciPost Phys. 9 (2020) 074;
M. Vandegar, M. Kagan, A. Wehenkel, G. Louppe, PMLR 11 (2021) 2107; M. Backes, A. Butter, M. Dunford, B. Malaescu, 2212.08674, ...

Diffusion: A. Shmakov et al., 2305.10399; S. Diefenbachar, G. Liu, V. Mikuni, B. Nachman, W. Nie, 2308.12351

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation

I'll focus here today because:

&

~prior independent (if maximum likelihood)

Density-Based Methods

Learn (unfolded) data probably density implicitly or explicitly.

I won't talk about these at all, but there has been a lot of work with GANs, VAEs, NFs, Diffusion...

GANs: K. Datta, D. Kar, D. Roy, 1806.00433; M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, R. Winterhalder, SciPost Phys. 8 (2020) 070, ...

VAEs: J. Howard, S. Mandt, D. Whiteson, Y. Yang, Sci. Rep. 12 (2022) 7567, ...

NFs: M. Bellagente et al., SciPost Phys. 9 (2020) 074;
M. Vandegar, M. Kagan, A. Wehenkel, G. Louppe, PMLR 11 (2021) 2107; M. Backes, A. Butter, M. Dunford, B. Malaescu, 2212.08674, ...

Diffusion: A. Shmakov et al., 2305.10399; S. Diefenbachar, G. Liu, V. Mikuni, B. Nachman, W. Nie, 2308.12351*

Classifier-Based Methods

Learn (unfolded) data likelihood ratio w.r.t. simulation

I'll focus here today because:

Learn a small correction (start close to the right answer)

&

~prior independent (if maximum likelihood)

My focus will be on a method called **OmniFold**.

Detector-level

Particle-level

Unbinned, highdimensional reweighting performed with neural networks

Full phase-space unfolding

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

Full phase-space unfolding

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

We see excellent closure for the full phase space!

Unbinned
Maximum likelihood*
Improves the resolution from correlations with detector response

*when binned, OmniFold converges to Lucy-Richardson (aka Iterative Bayesian Unfolding)

In fact, OmniFold can also work on low-level inputs (e.g. energy flow particles). In that case, you can construct observables **after** the measurement.

Please ask if you are interested, but briefly, OmniFold...

- Can accommodate backgrounds (unbinned) via <u>neural</u> positive reweighing
- Can accommodate acceptance effects
- Has a number of choices for how to update weights and/or keep track of acceptance effects

https://github.com/hep-lbdl/OmniFold

35

See A. Andreassen et al., ICLR SimDL for details [https://simdl.github.io/files/12.pdf]

First Results

I'll now spend a ~1 minute flashing the first unbinned measurement results

There is no time to give the physics content justice, so I'll be brief, but please let me know if you have any questions!

Results from H1, LHCb, STAR,

New methods for unbinned unfolding are here! We should be ready to use them also for BSM!

DESY 21-130, ISSN 0418-9833

Measurement of lepton-jet correlation in deep-inelastic scatterin with the H1 detector using machine learning for unfolding

V. Andreev,²³ M. Arratia,³⁵ A. Baghdasaryan,⁴⁶ A. Baty,¹⁶ K. Begzsuren,³⁹ A. Belou 23. V. Boudry,³¹ G. Brandt,¹³ D. Britzger,²⁶ A. Buniatyan,⁶ L. Bystritskaya,²² A.J. Campbell,¹⁴ K.B. K. Cerny,²⁸ V. Chekelian,²⁶ Z. Chen,³⁷ J.G. Contreras,⁴⁷ L. Cunqueiro Mendez,²⁷ J. Cvach,³³ J. K. Daum,⁴⁵ A. Deshpande,³⁸ C. Diacouu,²¹ G. Eckerlin,¹⁴ S. Egli,⁴³ E. Elsen,¹⁴ L. Favart,⁴ A. J. Feltesse,¹² M. Fleischer,¹⁴ A. Fomenko,²³ C. Gal,³⁸ J. Gayler,¹⁴ L. Goerlich,¹⁷ N. Gogitidze,²³ M C. Grab,⁴⁹ T. Greenshaw,¹⁹ G. Grindhammer,²⁶ D. Haidt,¹⁴ R.C.W. Henderson,¹⁸ J. Hessler,²⁶ D. Hoffmann,²¹ R. Horisberger,⁴³ T. Hreus,⁵⁰ F. Huber,¹⁵ P.M. Jacobs,⁵ M. Jacquet,²⁹ T. Janssen H. Jung,¹⁴ M. Kapichine,¹⁰ J. Katzy,¹⁴ C. Kiesling,²⁶ M. Klein,¹⁹ C. Kleinwort,¹⁴ H.T. Klest,³⁸ P. Kostka,¹⁹ J. Kretzschmar,¹⁹ D. Krücker,¹⁴ K. Krüger,¹⁴ M.P.J. Landon,²⁰ W. Lange,⁴⁸ P. S.H. Lee,³ S. Levonian,¹⁴ W. Li,¹⁶ J. Lin,¹⁶ K. Lipka,¹⁴ B. List,¹⁴ J. List,¹⁴ B. Lobodzinski,²⁶ E. H.-U. Martyn,¹ S.J. Maxfield,¹⁹ A. Mehta,¹⁹ A.B. Meyer,¹⁴ J. Meyer,¹⁴ S. Mikocki,¹⁷ M.M. Mondal, K. Müller,⁵⁰ B. Nachman,⁵ Th. Naumann,⁴⁸ P.R. Newman,⁶ C. Niebuhr,¹⁴ G. Nowak,¹⁷ J.E D. Ozerov,⁴³ S. Park,³⁸ C. Pascaud,²⁹ G.D. Patel,¹⁹ E. Perez,¹¹ A. Petrukhin,⁴² I. Picuric,³² R. Polifka,³⁴ S. Preins,³⁵ V. Radescu,³⁰ N. Raicevic,³² T. Ravdandorj,³⁹ P. Reimer,³³ E. Rizvi,²⁰ R. Roosen,⁴ A. Rostovtsev,²⁵ M. Rotaru,⁷ D.P.C. Sankev,⁸ M. Sauter,¹⁵ E. Sauvan,^{21,2} S. S B.A. Schmookler,³⁸ L. Schoeffel,¹² A. Schöning,¹⁵ F. Sefkow,¹⁴ S. Shushkevich,²⁴ Y. Soloviev,²³ D. South,¹⁴ V. Spaskov,¹⁰ A. Specka,³¹ M. Steder,¹⁴ B. Stella,³⁶ U. Straumann,⁵⁰ C. Sun,³⁷ T. P.D. Thompson,⁶ D. Traynor,²⁰ B. Tseepeldorj,^{38,40} Z. Tu,⁴¹ A. Valkárová,³⁴ C. Vallée,²¹ P. Van D. Wegener,⁹ E. Wünsch,¹⁴ J. Žáček,³⁴ J. Zhang,³⁷ Z. Zhang,²⁹ R. Žlebčík,³⁴ H. Zohrabyan,⁴⁶ and D. Wegener,⁹ L. Wunsch,¹⁴ J. Žáček,³⁴ J. Zhang,³⁷ Z. Zhang,²⁹ R. Žlebčík,³⁴ H. Zohrabyan,⁴⁶ and S. Sungara,⁴⁶ and S. Sungara,⁴⁷ S. Sungara,⁴⁸ S. (The H1 Collaboration) (The H1 Collaboration) ¹I. Physikalisches Institut der RWTH, Aachen, Germany ²LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France ³University of Michigan, Ann Arbor, MI 48109, USA¹¹ ⁴Inter-University Institute for High Energies ULB-VUB, Brussels and Universitiet Antwerpen, Antwerp, Belgium¹² ⁵Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA¹¹ ⁶School of Physics and Astronomy, University of Birtmingham, United Kingdom. ⁷Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), Bucharest ⁸STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom¹³ ⁹Institut für Physik, TU Dortmund, Ortmund, Germany¹⁵ ¹⁰Joint Institute for Nuclear Research, Dubna, Russia ¹¹CERN, Geneva, Switzerland ¹²Irfu/SPP, CE Saclay, Gif-sur-Yvette, France ¹³II. Physikalisches Institut, Universität Göttingen, Germany 24 ex] [hep-11691v1 ¹² Irfu/SPP, CE Saclay, Gif-sur-Yvette, France
 ¹³ II. Physikalisches Institut, Universität Göttingen, Germany
 ¹⁴ Deutsches Elektronen-Synchrotron DESY, Hambury, Germany
 ¹⁵ Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany
 ¹⁶ Rice University Heidelberg, Heidelberg, Germany
 ¹⁷ Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland¹⁶
 ¹⁸ Department of Physics, University of Liverpool, United Kingdom¹³
 ¹⁹ Department of Physics, University of Liverpool, United Kingdom¹³
 ¹⁹ Department of Physics, University of Liverpool, United Kingdom¹³
 ²¹ Acta Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
 ²² Institute for Theoretical and Experimental Physics, Moscow, Russia⁷⁷
 ²³ Lebedev Physical Institute, Moscow, Russia, Moscow, Russia
 ²⁶ Institute for Information Transmission Problems RAS, Moscow, Russia⁸⁵ arXiv:2208. Institute for Information Transmission Problems RAS, Moscow, Russia¹⁵
 Statiute for Information Transmission Problems RAS, Moscow, Russia¹⁵
 ²⁶ Maz-Planck-Institut für Physik, München, Germany
 ²⁷ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

2022

pr

A

[hep-ex]

12376v2

arXiv:2108.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2022-161 LHCD LHCb-PAPER-2022-013 August 25, 2022 Multidifferential study of identified charged hadron distributions in Z-tagged jets in proton-proton collisions at $\sqrt{s} = 13$ TeV

Jet fragmentation functions are measured for the first time in proton-proto collisions for charged pions, kaons, and protons within jets recoiling against a Z boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum $20 < p_T < 100$ GeV and in the pseudorapidity range $2.5 < \eta < 4$. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb⁻¹. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks

Submitted to Phys. Rev. D Letter © 2022 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence

¹¹-binned Deep Learning Jet Substructure Measurement in High $Q^2 ep$ collisions at HERA

Andreev⁴⁴, M. Arratia²⁹, A. Baghdasaryan⁴⁰, A. Baty¹⁶, K. Begzsuren³⁴, A. Bolz¹⁴, V. Boudrv²⁵, G. Brandt¹³. Britzger²², A. Buniatyan⁷, L. Bystritskaya⁴⁴, A.J. Campbell¹⁴, K.B. Cantun Avila⁴¹, K. C Chen³¹, J.G. Contreras⁴¹, J. Cvach²⁷, J.B. Dainton¹⁹, K. Daum³⁹, A. Deshpande^{33,36}, C. Eckerlin¹⁴, S. Egli³⁷, E. Elsen¹⁴, L. Favart⁴, A. Fedotov⁴⁴, J. Feltesse¹², M. Fleischer¹⁴, J. Eckerlin⁺, S. Eglu⁺, E. Elsen⁺, L. avalt⁺, A. Fedoto⁺, J. Felicsse⁺, M. Fleischer⁺, A. Gabyle⁺, I. Goreich², T. Goreitidz¹⁴, M. Gouzzvitch⁴, C. Grab², T. Greenshau¹⁹, add¹⁴, R.C. W. Henderson¹⁸, J. Hessler²², J. Hladký²⁷, D. Hoffmann²¹, R. Horisberger³⁷, PM. Jacobs⁵, M. Jacquet²⁴, T. Janssen⁴, A. W. Jung³⁸, J. Katzy¹⁴, C. Kiesling²², M. Kleit T. Klest³³, R. Kogler¹⁴, P. Kostka¹⁹, J. Kretzschmar¹⁹, D. Krücker¹⁴, K. Krüger¹⁴, M. Lif, I. Laycock⁵, S.H. Lee², S. Levonian¹⁴, W. Lif⁴, J. Linf⁴, K. Ligka¹⁴, B. List¹⁴, J. List¹⁴, Long³⁹, E. Malinovsk¹⁴, H.-U. Martyn¹, S.J. Marfield¹⁹, A. Mehta¹⁹, A.B. Meyer¹⁴, J. J. Wart¹⁴, D. W. Kutha¹⁴, D. M. Kutha¹⁴, D. M. Kutha¹⁴, D. M. Kutha¹⁴, D. Krücker¹⁴, J. List¹⁴, J. List¹⁴, J. List¹⁴, J. List¹⁴, J. List¹⁴, J. Kutha¹⁵, R. Kutha¹⁶, M. Kutha¹⁶, N. Kutha¹⁶, D. Krücker¹⁴, J. List¹⁴, J. List¹⁴, J. List¹⁴, J. Kutha¹⁶, D. Krücker¹⁴, J. Kutha¹⁶, D. Krücker¹⁶, J. Kr V.M. Mikuni⁵, M.M. Mondal³³, K. Müller⁴³, B. Nachman⁵, Th. Naumann¹⁴, P.R. Newn G. Nowak¹⁷, J.E. Olsson¹⁴, D. Ozerov⁴⁴, S. Park³³, C. Pascaud²⁴, G.D. Patel¹⁹, E. Perez Li Ficurică⁵, D. Pitzl¹⁴, R. Polifka²⁵, S. Preins²⁹, V. Radescu¹⁵, N. Raicevicã⁶, T. Ravdan Rizvi²⁰, P. Robman⁴³, R. Roosen⁴, A. Rostovtsev⁴⁴, M. Rotaru⁸, D.P.C. Sankey⁹, M. S S. Schmitt¹⁴, B.A. Schmookler³³, G. Schnell⁶, L. Schoeffel¹², A. Schöning¹⁵, F. Sefkow¹ oloviev¹⁴, P. Sopicki¹⁷, D. South¹⁴, A. Specka²⁵, M. Steder¹⁴, B. Stella³⁰, U. Straumann P.D. Thompson⁷, F. Torales Acosta⁵, D. Traynor²⁰, B. Tseepeldorj^{34,35}, Z. Tu³⁶, G. Tusti Vallée²¹, P. Van Mechelen⁴, D. Wegener¹⁰, E. Wünsch¹⁴, J. Žáček²⁸, J. Zhang³¹, Z. Zh H. Zohrabyan⁴⁰, F. Zomer²⁴ 2

H. Zohrabyan", F. Zomet"
¹U. Physikalisches Institut der RWTH, Ancher, Germany
¹University of McKingan, Ann Arhon, MH 8100, USA ⁸
¹UAPP, Universit de Savoie, CNRS/NZP3, Annecy-le-Vieux, France
¹UAPP, Universit de ILA-VUB, Brussela and Universiteit Antwerpen, Antwo
¹Jurvence Berkeley National Laboratory, Berkeley, CA 94720, USA ⁸
¹Department of Physics, University of Biomingham, Birmingham, United Kingdulade National Institute for ROD in Physics and National Control (PUPK)HI, Buckensen ⁸STcho (a) Physics, Children (2000), Diatroni (2000), Children (2 ¹Instance of Nuclear Physics Points Academy of Sciences, Krakow, Poland J. Department of Physics, University of Lancaster, Lancaster, United Kingdom⁴ Department of Physics, University of Lancaster, Lancaster, United Kingdom⁴ Physics and Attronomy, Queen Mary, University of Landon, London, United K. ³Jat Marselle Univ, CNRS/INZP3, CPPM, Marselle, France ¹²Marz-Hanch-Istituting IP Physik, Manchen, Germany ²³Joint Laboratory of Optics, Palacky University, Olomouc, Czech Republic ³⁴IJCtath, Université Patris-Sachor, CNRS/INZP3, Prance ³²ILLR, Ecole Polytechnique, CNRS/INZP3, Palaisenu, France ²³Eurota of Castena, Université Patris-Sachor, CNRS/INZP3, Prance ³⁴ILLR, Ecole Polytechnique, CNRS/INZP3, Palaisenu, France ²³LBL Ecole Polytechnique, CNRSNP29, Palaisteau, France ²⁶Stacuel of Science, University of Montenegro, Pologorica, Montenegro ¹⁶ Institute of Physics, Academy of Sciences of the Czech Republic ²⁶Steault of Mathematics and Physics, Charles Churversity, Pavha, Czech Republic ²⁶Dipartimetori to Fisca University and Roma Te and INFN Roma, 3. Roma, Italy ²⁶Shandang University, Shandong, P.R. China ²⁷Shakadar V. Department file Physik, Universitä Stegen, Siegen, Germany ²¹Stabadar Dechnology of the Mongolian Academy of Science, Ulanbatar, M ²¹Uanabatara University, Standong V. Starbara, Charlandon ²¹Shandara University, Standong of Science, Ulanbatar, M ²¹Uanabatara University, Unavlantara M, Mongolian Academia ²²Uanabatara University, Unavlantara M, Markan ²³Encolobaren Vational Laboratory, Dyno, NY 11973, USA arXiv:

ed to Physics Letters H

Measurement of CollinearDrop jet mass and its correlation with SoftDrop groomed jet substructure observables in $\sqrt{s} = 200 \text{ GeV} pp$ collisions by STAR.

Jul

18

[nucl-ex]

.07718v2

2307

YOUQI SONG (WRIGHT LABORATORY, YALE UNIVERSITY)

Jet substructure variables aim to reveal details of the parton fragmentation and hadronization processes that create a jet. By removing collinear radiation while maintain ing the soft radiation components, one can construct CollinearDrop jet observables, which have enhanced sensitivity to the soft phase space within jets. We present a CollinearDrop jet measurement, corrected for detector effects with a machine learning method, Multi-Fold, and its correlation with groomed jet observables, in pp collisions at $\sqrt{s} = 200$ GeV at STAR. We demonstrate that the population of jets with a large non-perturbative contribution can be significantly enhanced by selecting on higher CollinearDrop jet mass fractions. In addition, we observe an anti-correlation between the amount of grooming and the angular scale of the first hard splitting of the jet.

PRESENTED AT

DIS2023: XXX International Workshop on Deep-Inelastic Scattering and Related Subjects, Michigan State University, USA, 27-31 March 2023

July 19, 2023

on behalf of the STAR Collaboration

+<u>CMS open data study</u>

So far, OmniFold seems to work as designed! Exciting to see where this will take us.

There are still some challenges we need to overcome:

- OmniFold is computationally expensive (need to train many networks, especially with ensembling to reach precision)
- How to publish an unbinned result? (all results so far are presented as binned) - see 2109.13243. Breaks HEPData!
- Modeling/closure uncertainties in high dimensions (not a new problem, but perhaps more acute)
- What about profiling? See 2302.05390 for a partial solution.

A **new measurement paradigm** is possible, enabled by ML-based unfolding methods

We can analyze our data **holistically** and **future-proof** it using unbinned techniques

More R&D is required, but in parallel, these tools are already starting to **deliver science results**!

How do to the reweighting without binning?

How do to the reweighting without binning?

dataset 1: sampled from p(x)dataset 2: sampled from q(x)

Create weights w(x) = q(x)/p(x) so that when dataset 1 is weighted by w, it is statistically identical to dataset 2.

What if we don't (and can't easily) know *q* and *p*? (and don't want to estimate them by binning)

Fact: Neutral networks learn to approximate the likelihood ratio = q(x)/p(x)

(or something monotonically related to it in a known way)

Solution: train a neural network to distinguish the two datasets!

This turns the problem of **density estimation** (hard) into a problem of **classification** (easy)

Neural reweighing: works very well!

Full phase-space reweighing using simulated e+e-

42

Works even when the differences are **small** (left) or **localized** (right).

These are histogram ratios for a series of one-dimensional observables

A. Andreassen, BPN, PRD 101 (2020) 091901

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

