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https://indico.bnl.gov/event/19560/timetable/?view=standard_inline_minutes#29-the-exatrkx-project
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ExaTrkX Pipeline

● ExaTrkX is a ML solution to track finding for High Luminosity LHC
● The pipeline consists 3 discrete steps: graph construction, edge labeling, graph 

segmentation
● Graph construction: module map and Metric Learning
● Edge labeling: Graph Neural Network
● Graph Segmentation: Connected Components & Walkthrough
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Collaborating with L2IT group for ATLAS ITk
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Apply ExaTrkX to ITk

Challenges:

● Large number of hits, ~300k ( 3x more than 
those in the Track ML dataset)

● About 50% noise hits per event in simulated tt 
events with mu = 200

● Shared hits  → Ambiguity
● Electrons → Energy loss, delta rays
● Low resolution of hit positions for strip 

detectors → poor GNN performance
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Heterogeneity in GNN tracking

Heterogeneous data:

● Pixel detector: one spacepoint = one cluster, [r, φ, z]
● Strip detector: one spacepoint = two clusters, [r, φ, z] + cluster one + cluster two

In CTD 2022 results, the two cluster information for the strip SP was not used.

Heterogeneous GNN:

● In the Graph Encoder, use different MLPs to encode Strip and Pixel spacepoints differently
● Or / And  in the message passing, encode messages differently for Pixel and Strip 

spacepoints
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Key idea: Add cluster features to spacepoint features

● For Strip spacepoints in barrel region, add the two associated cluster information
● For Pixel spacepoints and Strip spacepoints in endcap region, repeat its features to reach 

the same length

The GNN model is re-trained with the “extended node features”. We call the trained model as 
the “Extended GNN”

Explore Heterogenous Data
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In the Extended GNN, we use 
different Message Passing Modules 
for each message passing step
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Experimental setup
● Graphs constructed from the metric learning
● Use the “extended spacepoint features” without eta
● But do not pad pixel spacepoints with its features to reach the same length

Heterogeneous GNN

● Use a heterogenous Graph encoder 

Explore Heterogeneous GNN
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[r, φ, z, rcluster, φcluster, zcluster]
MLPsPixel SP

Strip SP MLPs
[r, φ, z, rcluster1, φcluster1, zcluster1, rcluster2, φcluster2, zcluster2]
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Distributed ML Training

Thanks to the Pytorch Lightning framework, it 
becomes easy to perform “data parallelism” 
distributed training. It supports

● different accelerators: CPUs, GPU, IPUs, 
and so on

● Distributed training on GPUs across 
different computing nodes (particularly 
useful for HPCs)

● Mixed precision (useful for memory hurry 
models)

● And so on…
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https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.trainer.trainer.Trainer.html#lightning.pytorch.trainer.trainer.Trainer


ExaTrkX for EF Tracking  | X. Ju

Results on ATLAS ITk ATL-SOFT-PROC-2023-038
Public Plots, CHEP 2023 Talk, 
CTD 2023 Talk

ExaTrkX + Global chi2
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https://cds.cern.ch/record/2871986
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-01/
https://indico.jlab.org/event/459/contributions/11414/
https://indico.cern.ch/event/1252748/contributions/5576737/
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Accelerating the ExaTrkX Pipeline

Lazar et al 
ACAT 2021
CTD 2022
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✓ Achieved ~linear scaling vs # hits
• Sped up GPU inference 20x

✓ < 1s wall-clock on GPUs
• Now dominated by Filtering MLP & GNN

• CPU inference 15x-200x slower
• Parallelized, not yet optimized

CPU GPU

EPJ C 2021

TrackML
Data
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https://arxiv.org/abs/2202.06929
https://indico.cern.ch/event/1103637/contributions/4821918/
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
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End-to-End tracking
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A. Krasznahorkay
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ExaTrkX + ACTS demonstrator

ICHEP 2022, Benjamin Huth, 
ACTS, University of Regensburg

Integrating into ACTS allows us to compare ExaTrkX 
pipeline with the existing algorithms. Link to the code.

A preliminary computing time comparison between 
conventional algorithms (CKF) and the ExaTrkX

● ExaTrkX was run in GPUs, while CKF in CPUs

A GPU-version of ACTS is under development [traccc]. 
Would be interesting to compare ExaTrkX with the 
GPU version.
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https://inspirehep.net/files/f83749f0339bbaa44ef1712529cc3650
https://github.com/acts-project/acts/tree/main/Plugins/ExaTrkX
https://github.com/acts-project/traccc
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Traccc

● WIP: ExaTrkX + Traccc to achieve a 
GPU-supported End-to-End tracking
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Hierarchical GNN

Tracks

Hits

HGNNs features:

● Direct representation of high-level concepts (“track”)
● Multi-scale information pooling
● Long-range interactions even across missing edges

Tested on small “TrackML-1GEV” 
events (~1K particles/10K spp)

Scaling to higher densities to be 
understood

Ryan Liu - ACAT 2022
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https://arxiv.org/pdf/2302.00049.pdf
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ExaTrkX as a Service
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CTD 2022, CTD 2023

● It separates ML algorithms from the production framework.
○ No need to install dependencies in the production framework that will only be used 

by one algorithm
○ No need to change the production code when the algorithm is changed

■ ML models can run on different coprocessors in different ML frameworks
● Server can be local.

https://indico.cern.ch/event/1103637/contributions/4825740/
https://indico.cern.ch/event/1252748/contributions/5521548/
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Overhead for local services
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● Studies by CMS shows no overhead of 
running a “server” on the same machine 
as the “client”

● That means we can have the framework 
factorization for free, enabling a quick 
R&D turnaround time

https://cds.cern.ch/record/2863316/files/DP2023_037.pdf
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Ensemble Backend
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Python

Python

Pytorch

Pytorch

Pytorch

Pytorch

Ensemble model 
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● GNN-Based Tracking is a complex workflow, consisting of 5 discrete 
sub-algorithms

● Ensemble scheduling uses greedy algorithms to schedule each algorithms
● Pros: directly use existing Triton inference backends
● Cons: little control with the data flow and algorithm scheduling, increasing 

the IO operations and latency
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Customized Backend
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Custom backend

Customized backend provides means to receive requests from and send outputs to 
the client.

Pros : low overhead, full control of data flow and devices;

Cons : need to write user’s own inference code We build customized backends for 
the GPU-only ExaTrkX inference service and the CPU-only (fallback).
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CPU-based GNN Tracking Service

Triton Server knows how to better utilize CPU 
resources than a simple TBB scheduling
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GPU-based GNN Tracking Service
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● Increasing Triton model instances increases the GPU utilization and throughput
● Customized backend is better than Ensemble model for complex workflow like the 

GNN-based Tracking
● Direct inferences require higher concurrency to reach maximum throughput



X. Ju

ACTS with ExaTrkX for track finding
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ExaTrk TorchScript implementation done 
by Benjamin Huth

TrackFinding (ExaTrk) can run locally 
with CPU/GPU

ACTS TrkFitting still run only on CPU

SpaceMaker/Alg

ExaTrk/Alg

TrkFitting/Alg

CTX

ACTS

measurements 

tracks

https://github.com/acts-project/acts/tree/main/Plugins/ExaTrkX
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ACTS with ExaTrkX aaS
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SpaceMaker/Alg

ExaTrkTritonClient/Alg

TrkFitting/Alg

CTX

ACTS

measurements 

tracks

Share most of the direct inference code 

to do preprocessing (scaling, covert into 

primitive type vector…etc)

- More fair comparison when doing 

timing studies GNN - based 
Triton server 

Users can swap between direct or triton inference easily 
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Conclusion

● ExaTrkX pipeline is stepping towards production-level particle tracking for offline tracking

○ Our current focus is on making the paper public,

○ Next is on computational performance

● From R&D to production, I recommend Triton. It will significantly reduce the integration 

time and keeps full flexibility of updating the pipeline.

● For the distributed training of ML models, use existing frameworks.

22


