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1. There is not one optimal design, rather multiple tradeoff solutions

2. We want to utilize the most realistic simulation pipelines to accurately
identify this set of optimal solutions

3. We want to minimize the number of design points to generate—the total
computational budget—that are needed to achieve the above.




|_AI—Assisted Detector Design _l

The Al-assisted design embraces all the main steps of the sim/reco/analysis pipeline...
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e Benefits from rapid turnaround time
1_ | from simulations to analysis of
¢ .th. high-level reconstructed observables
\ /

e The EIC SW stack offers multiple
Design Parameters Objectives features that facilitate Al-assisted
l design (e.g., modularity of simulation,

reconstruction, analysis, easy access
Detector
Simulation
Accurate simulations of the passage of particles or

to design parameters, automated
radiation through matter

checks, etc.)

Reconstructed
Features

e Leverages heterogeneous computing

A complex problem with (i) multiple design parameters, driven by (ii) multiple objectives
(e.g., detector response, physics-driven, costs) subject to (iii) constraints
5 I

{ Provide a framework for an holistic optimization of the sub-detector system
I E Those at EIC can be the first large-scale experiments ever realized with the assistance of Al




|_Simu1ation Campaigns _l

e Large simulation campaigns needed since proto-collaboration phase, where
we adopted solutions with containerized software with distribution over the

0OSG

e This typically entails a large volume of events which are simulated for any
given design of the detector (“design point”)

e And more simulations need to be generated to explore multiple design points

Number of Events [X10°] | Storage [TB] | CPU-core hours [Mcore-hrs]

2022
2023 - 2024
2025 - 2028
2029 - 2030

Productions will then decrease as focus moves into hardware development before increasing significantly before initial

Estimated simulation requirements based on observed performance in 2021. Include only large scale productions.
data taking as “Mock Data Challenges” — from NIM-A: 1047 (2023): 167859 6



https://arxiv.org/pdf/2205.08607.pdf

|_From an Al perspective _l

e The Al-assisted framework utilizes heterogeneous resources and waits to collect

the results of the analysis from the simulated events (for a given design) and
suggests next design points to query

e Main ingredients

Constraints

Design Points

Objectives




CF, Z. Papandreou, K. Suresh, et al. "Al-assisted optimization of

[ ] [ ]
C O n t r 1 b u t 1 O n S the ECCE tracking system at the Electron lon Collider." NIMA:
1047 (2023): 167748.

CF "Design of detectors at the electron ion collider with artificial
intelligence." JINST 17.04 (2022): C04038.
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objectives
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design parameters | Multi-Objective =

[ objectives Bayesian Optimization |
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& 1N PARETO FRONT d
- UPDATE OBJECTIVES AT

~ DESIGN CANDIDATE
* ita flow via Rucio

ntrol/info flow via PanDA/IDDS

(i) Will contribute to advance state of

the art MOBO complexity to ) _ (iii) Will leverage cutting-edge
accommodate a large number of (i) Development of suite of data workload management systems
objectives and will explore usage of ~Sclénce tools for mte_rac?tlve nqwgat_lon capable of operating at massive
physics-inspired approaches of Pareto fror?t (mul’[_l-dlm design with data and handle complex
multiple objectives) workflows

Examining solutions on the Pareto front of EIC detectors at different values of the budget can have great cost benefits

A fractional improvement in the objectives translates to a more efficient use of beam time which will
make up a majority of the cost of the EIC over its lifetime 8



https://ai4eicdetopt.pythonanywhere.com/

|_Bayesian Optimization In a nutshell _l

BO is a sequential strategy
developed for global
optimization.

After gathering evaluations we
builds a posterior distribution
used to construct an acquisition
function.

This cheap function determines
what is next query point.

Acquisition function

t=3 t=4

Posterior

Acquisition function

1. Select a Sample by Optimizing the Acquisition Function.

2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.
4. Go To 1.




Iteration: 0
£=0.01
Predicted (u)
Ground Truth (f)
uxo
Training Points
Query Point

Acquisition function
Maxima

Utilization Exploration

(i) — f(2") — €)@(Z) + 0:(z)9(2), ifoi(z) >0
N if oy(z) = 0

Best found so far

We are sampling x

“Exploitation”: search where p is high
“Exploration”: search where o is high

Gold content
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rﬁalti—Objective Optimization

MOO is needed to optimize a system of sub-detectors

e 3 Types of Objectives

o Intrinsic detector performance (resolutions, For illustrative purposes
efficiencies) for each sub-detector —

Tracking, calorimetry, PID — noisy hypervolume

o  Physics-performance — Multiple physics
channels, equally important in the EIC physics
program

o Costs (e.g., material costs, provided a
reliable parametrization)

e Objectives can be competing with each other

7 7
o E.g. Better detector response come with Objective Space
higher costs; better resolutions may imply
lower efficiencies; etc.

Design Space

L]
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e In the following we will refer to the multi-objective optimization based on evolutionary
algorithms [1], and in particular pymoo [2], written in Python, which also includes
visualization and decision making tools.

e The definition of a generic MOO problem can be formulated as:

e M objective functions f(x) to optimize. By
min fm(x) m = 1, ..,M, cqng,tryctlpn, pymoo peﬁorms .

minimization so a function to maximize
needs a minus sign.

s.t.  g;(x) <0, =1,
e There can be J inequalities g(x)
hk(x) == 0’ k= 1’ “9 K’ e There can be K equality constraints h(x)
L U = e There are N variables x. with lower and
X <Xx; < X = I,..,N. upper boundaries.

[1] Deb, Kalyanmoy. Multi-objective optimization using evolutionary algorithms. Vol. 16. John Wiley & Sons, 2001.
[2] Blank, Julian, and Kalyanmoy Deb. "pymoo: Multi-objective Optimization in Python." IEEE Access 8 (2020): 89497-89509 12




n: number of design points
d: design dimensionality (each point)
M: objectives



https://arxiv.org/pdf/2105.08195.pdf
https://proceedings.mlr.press/v161/eriksson21a/eriksson21a.pdf
https://arxiv.org/pdf/1111.4246.pdf

|_Project Workflow

Simulations
Complexity of the problem,
large design space,

many objectives
Test Functions

Al-assisted

Asynchronous optimization
paralielization of design
points and simulations

Distributed

Al-assisted

Distributed

14



raiosure Test 1

W&B dashboard for monitoring

o MOBO stress-testing for
problems with increasing
complexity (design and
objectives) and known Pareto

Multiple metrics
o Accuracy of optimization
o Convergence properties

o Compute resources

Increase in HV w.r.t true pareto



https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495

|_Closure Test 2: PaNDA/iDDS _l

e Stress-testing scalability,
robustness across
distributed resources

e Adapt Al/ML
services to support MOBO
workflow for design

Start

DS :
t. . t. NO le I '.‘; E . s
O p I m Iza IO n N foos W ;: ot e - docker GONtainerised software

#; Data flow via Rucio

Bayesian optimisation based active learning with Panda/iDDS and Rucio

]



https://panda-wms.readthedocs.io/en/latest/advanced/idds.html

Interactive navigation of Pareto froﬁ%1

C.Fanelli et al, NIM A, 2023, 167748,
arXiv:2205.09185

Multi Objective Bayesian Optimization GEANT4 Visualization of the design

The whole idea of the Al-assisted design is
that of determining trade-off optimal
solutions in a multidimensional design
space driven by multiple objectives

® Batch Number @ Pareto Front from surrogate

For an interactive visualization:
— https://ai4eicdetopt.pythonanywhere.com

Click on petals for finer evaluations Design Parameters Table

Performance of the Chosen Design Solution Berameterhiame farameten Vol
Angle of cone [deg] 25.00

Radius of uRwell-1 [cms] 32.47
ZE-TTL [ems] 171.00
2 F-TTL [cms] 157.60
ZEST-1 [ems] 40.39

ZEST-3 [ems] 85.09

2 FST-1 [ems] 35.03
2 FST-3 [ems] 83.78
2 FST-5 [ems] 131.27

= Momentum res ® Theta res
® Phires KF InEff

»—0—4':
PP LR e sl E

5 10 15 20 5 10 15
Track p [GeV/c] Track p [GeV/c]
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https://ai4eicdetopt.pythonanywhere.com/

|_Candidates for Optimization in ePIC _l

Considering all the constraints as ePIC is in the process of finalizing engineering
designs, we can select those sub-detectors that still have tunable parameters

e B0 magnetic field map, distance between space
(always considered even), central location of tracker

’ 1 e  Momentum resolution, acceptance

ﬁd . e Mirror, sensor

placement, gas,
mirror material (lower

n. costs material)... / P
| &
\ e PID performance, ’
yw COS tS, . BOpf combined function magnet
dual-RICH Far-Forward

=2

Ongoing discussion with working groups to identify potential 18 I



|_Documentation and Qutreach _l

e GitBook and/or other knowledge sharing platforms will be part of the initiatives
related to documentation and outreach

e Offering opportunities for experiential learning with easy access for beginners

Welcome

. This website hosts a mini-col
Al for Detector Design

NNPSS 2022



http://cfteach.github.io/nnpss
https://cfteach.github.io/HUGS23

|_Conclusions _l

e Al techniques that can optimize the design of complex, large-scale experiments have the
potential to revolutionize the way experimental nuclear physics is currently done — DOE
Town Halls on Al for Science in 2019

e \We are aiming to complete a first coupling of MOBO with the EIC shell in the next few
months (targeting Spring) to exercise the machinery

e Ultimately, we can realize a framework that can optimize holistically a large-scale detector,
and that is scalable and distributed. The Detector-2 at EIC seems to be an ideal candidate
for this at this stage.

e In detector projects, most changes happen during the construction phases (e.g., changes
in the available material or budget). AID2E will be an ideal tool to optimize design changes
with objectives (e.g., reduce cost).

e This framework inherently offers broader impacts, as it can be adapted for use in various
experiments and is suitable for a wide range of compute-intensive applications that
necessitate MOO (e.g., calibrations, alignments, etc)

20 I




3rd AI4EIC Workshop,

Nov 28 - Dec 1,

2023,

Catholic University of America, Washington D.C.

21



