Photon Classification with Gradient Boosted Trees at CLAS12

Ideal $\pi^{\pm}\pi^{0}$ dihadron event @ CLAS12

Fixed proton target

Typical $\pi^{\pm}\pi^{0}$ dihadron event @ CLAS12

Photon GBT Classifier

- Using Gradient Boosted Trees architecture handled by CatBoost
 - Many weak learner trees \rightarrow strong classifier
 - Handles empty inputs (useful for nearest neighbor structure)

Model Structure

- N Trees: 1000
- Tree Depth: 10
- Learning Rate = 0.1
- Symmetric Growth Policy
- 16 inputs (5 intrinsic, 9 nearest neighbor)

Photon GBT Classifier

Train on intrinsic (E_{dep} , θ , calo-shape, etc.) and nearest neighbor (angular separation with N-nearest charged hadron, neutral particle, etc.) features

Sample Set of Model Parameters

 $R_a(n) \rightarrow$ Angular distance to (n+1)th nearest particle 'a'

Model Performance

Conclusion

- Photon classifier targets **false photons** at CLAS12 \rightarrow purifies π^0 signal w/o training on $\gamma\gamma$ resonance \rightarrow Applicable for many π^0 studies
- Tutorial @ <u>https://github.com/Gregtom3/clas12_photon_classifier</u>

