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Deep Inelastic Scattering
DIS is governed by the four-momentum transfer squared of the exchanged boson Q2, the inelasticity y, and 
the Bjorken scaling variable x.

Higher-order QED 
corrections at the 

lepton vertex

Initial State Radiation

Final State Radiation

These kinematic variables are related via the relation                      ,  where s is the square of the 
center-of-mass energy.

, ,

- Dataset designed in [2] 
- Monte Carlo from HERA
- Full QED radiation and Lund hadronization simulation
- Features Sensitive to QED Radiation 



ELUQuant
Learn the Posterior over the weights

Access epistemic (systematic) uncertainty through sampling MNF [3] layers

Access aleatoric (statistical) as a function of regressed output [4]

Learn the regression transformation

Constrain the physics

Lightweight



Event-Level Uncertainty Quantification
Weight Events with 

Uncertainty

Uncertainty Based 
Selection

Uncertainty on plots are average uncertainties at the event-level



Conclusions
- Event-level uncertainty provides invaluable information at inference

- Physics informed networks improve regression quality

- Lightweight design provides fast inference with sampling  ~20ms/event

- ELUQuant performs on par in large kinematics space with other regression methods

- ELUQuant additionally provides uncertainties on every event

- Epistemic increase with true inaccuracy

We thank the H1 Collaboration for allowing us to use 
the simulated MC event samples.

Potential applications at EIC in the future
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