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• Data collected by NP/HEP experiments are (always) affected by the detector’s effects.

• Before starting physics analysis the detector’s effect unfolding is required.

• Traditional observables may not be adequate to extract physics in multidimensional space 

(multi-particles in the final state).
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Can AI support NP/HEP experiments 

to extract physics from data in a 

more efficient way?
Collaborative effort (regular meeting)
• ML experts (ODU, Jlab)
• Experimentalists (Jlab Hall-B) 
• Theorists (JPAC, JAM)

Develop AI – supported procedures to:
• Accurately fit data in multiD space
• Unfold detector effects
• Compare synthetic (AI-generated) to experimental data
• Quantify the uncertainty (UQ)
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Exclusive reactions: 𝟐 → 𝟑
● 𝜸𝒑 → 𝝅+𝝅−𝒑 (unpolarized)

● Initial state: Fully known
● Final state: 3x3 independent variables
● Independent variables: (3x3) – 4 = 5 (𝐸𝛾 fixed)
● Many possible choices, such as 𝑀2 𝜋𝜋, 𝑀2𝑝𝜋 , 𝜃 𝜋, 𝛼, 𝜙 

CLAS g11 2𝜋 photoproduction 

● 𝐸𝛾 =(3 −3.8)𝐺𝑒𝑉
● Dataset analysis on 𝛾𝑝 → 𝑝𝜋+(𝜋−) with small contamination 

from 𝛾𝑝 → 𝑝𝜋+ (more than a single missing 𝜋−)
● Complicated dynamics due to the overlap of (p𝜋) to form 

Δ baryon resonances and (𝜋𝜋) to form meson resonances

AI could provide a new way to 
look at data and to extract 

observables and physics 
interpretation

Alghamdi T, Alanazi Y, Battaglieri M, Golda AV, Blin AH, Isupov EL, Li Y, Marsicano L, Melnitchouk W, Mokeev VI, Montaña G. Toward a generative modeling 
analysis of CLAS exclusive 2 π photoproduction.Physical Review D. 2023 Nov 21;108(9):094030.



Detector unfolding
• Detector effects make measured observables (detector-level) different from the ‘true’ 
observables (vertex level).

Acceptance: Any measurement can access only a limited portion of the phase space. What 
can we say about these unmeasured regions?

➢  Interpolation: deal with the holes in the phase space
➢ Extrapolation: extend our coverage from the borders of measured regions

Resolution: Any measurement has an experimental resolution that may modify cover-up 
effects that we’re looking for

➢ Spikes may be concealed behind the detector resolution 
➢ Measurements could be extended to unphysical regions

• Mitigation strategy:
➢ Acceptance: ‘Fiducial volumes’ to exclude unmeasured regions and extend 

the covered measured of the phase space
➢ Resolution: build and validate ML-models to unfold resolution effects
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Generative Adversarial Networks 
(GANs)
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• A generative model built upon the competition between two neural networks: the Generator 
and the Discriminator.

• Discriminator is trained to discern real (nature) from synthetic (generated) events.
• Generator is trained to create events as close as the nature, in order to fool the discriminator. 

• The Generator is employed to preserve 
high-dimensional correlations, acting as detector 
proxies.

• Generator can be used to provide highly realistic 
pseudo-data in an extremely fast way.
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GAN variations

● There are many variations of GANs, for example:

○ Conditional GAN (CGAN):
■ Condition the model on labels.

○ Deep Convolutional GAN (DCGAN):
■ Uses deep CNN layers.

○ Wasserstein GAN (WGAN)
■ Replaces the discriminator by a critic and uses Wasserstein loss.

○ Least Squares GAN (LS-GAN):
■ Replaces the loss function for the discriminator from binary cross entropy to a least 

squares loss.
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Main components:

● This work has two main components:

○ Simulating the smearing detector effects using ML tools.

■ Folding GAN        Detector-Simulation (DS-GAN)              MC-Phase Space pseudodata

○ Building  a ML-based event generator framework to reconstruct vertex-level events.

■ Unfolding GAN  (UNF-GAN)                 MC-Realistic pseudodata

DS-GANVertex-level Detector-level

Vertex-level Detector-levelUNF-GAN



𝟐𝝅 photoproduction closure test

1. Generate events with a (realistic) Monte Carlo 2𝜋 photoproduction 
model (RE-MC GEN pseudodata)

2. Apply detector effects (acceptance and resolution) via GSIM- 
GEANT (RE-MC REC pseudodata)

3. Deploy a secondary GAN (DS-GAN) to learn detector effects 
using an independent MC event generator (PS-MC) + GSIM- 
GEANT (GEN and REC pseudodata)

4. Deploy the unfolding GAN (UNF-GAN) that includes the DS- 
GAN, and train it with RE-MC REC pseudodata

5. Compare UNF-GAN GEN SYNT data to RE-MC GEN pseudodata

6. Future work: Replace RE-MC REC pseudo data with CLAS data 
in the training to unfold the vertex-level experimental distributions
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• CLOSURE TEST:
Demonstrate that GANs reproduce ‘true’ multi-d correlations, unfolding CLAS detector effects, comparing vertex-level 
(GEN) events with GAN GEN SYNT events, trained at detector-level and unfolded with a (GAN-based) detector proxy

Alghamdi T, Alanazi Y, Battaglieri M, Golda AV, Blin AH, Isupov EL, Li Y, Marsicano L, Melnitchouk W, Mokeev VI, Montaña G. Toward a generative modeling 
analysis of CLAS exclusive 2 π photoproduction. Physical Review D. 2023 Nov 21;108(9):094030.



1. Generate events with a (realistic) Monte Carlo 2𝜋                                                                                    
photoproduction model (RE-MC GEN pseudodata)

● RE-MC realistic Monte Carlo event generator to mimic real data.                                                          

Includes measured cross-sections, angular distributions and                                                                    

decay of dominant mechanisms(𝜌0, Δ++, Δ0 , a contact term)

GEN events
𝟐𝝅 photoproduction closure test
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𝟐𝝅 photoproduction closure test

2. Apply detector effects (acceptance and resolution) via GSIM- GEANT 
(RE-MC REC pseudodata)

● GSIM: detector simulation package to simulate CLAS detector effects 
based on GEANT3

GEN events

RE-MC REC 𝝅+ events
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3. Deploy a secondary GAN (DS-GAN) to learn detector effects using an independent MC event generator (PS-MC) 

+ GSIM- GEANT (GEN and REC pseudodata)

𝟐𝝅 photoproduction closure test

DS-GAN
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3. Deploy a secondary GAN (DS-GAN) to learn detector effects                                                                                             

using an independent MC event generator (PS-MC) +                                                                                                               

GSIM- GEANT (GEN and REC pseudodata)

𝟐𝝅 photoproduction closure test
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PS-MC GEN events

● PS-MC: Phase space Monte 
Carlo event generator



3. Deploy a secondary GAN (DS-GAN) to learn detector effects                                                                                             

using an independent MC event generator (PS-MC) +                                                                                                               

GSIM- GEANT (GEN and REC pseudodata)

𝟐𝝅 photoproduction closure test
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PS-MC GEN events

● GSIM-GEANT to simulate 
CLAS acceptance and 
resolution

CLAS resolution on 𝝅+ kin. variables

Another way to check the smearing is to consider all momenta



DS-GAN results

DS-GAN
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MC REC pseudodata vs. DS-GAN synthetic data

CLAS resolution 

DS-GAN learned the CLAS detector effects!

● Uncertainty quantification via pull calculation: Bootstrap with 
20 independently trained GANs

● Pull calculation for each bin: 
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RE-MC GEN pseudodata vs. UNF-GAN SYN data

Good agreement (±1𝜎) for vertex-level training variables!

4. Deploy the unfolding GAN (UNF-GAN) that includes the DS- GAN, 
and train it with RE-MC REC pseudodata

● UNF-GAN trained with REC-MC pseudodata (experimental data 
proxy)        

● DS-GAN used to unfold CLAS detector effects (within acceptance)

5. Compare UNF-GAN GEN SYNT to RE-MC GEN pseudodata

UNF-GAN results

Systematic of the full procedure (two- 
GANs) estimated by bootstrap with 20+20 
independently trained GANs
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RE-MC GEN pseudodata vs. UNF-GAN SYN data

Good agreement (±1𝜎) for vertex-level training variables!

4. Deploy the unfolding GAN (UNF-GAN) that includes the DS- GAN, 
and train it with RE-MC REC pseudodata

● UNF-GAN trained with REC-MC pseudodata (experimental data 
proxy)        

● DS-GAN used to unfold CLAS detector effects (within acceptance)

5. Compare UNF-GAN GEN SYNT to RE-MC GEN pseudodata

UNF-GAN results

2D pull
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Distribution in 4d bins

Good agreement (±1𝜎) for lab variables and in 4D bins!

4. Deploy the unfolding GAN (UNF-GAN) that includes the DS- GAN, and 

train it with RE-MC REC pseudodata

5. Compare UNF-GAN GEN SYNT to RE-MC GEN pseudodata

UNF-GAN results

RE-MC GEN pseudodata vs. UNF-GAN SYN data

● UNF-GAN trained with REC-MC pseudodata (experimental data proxy)        

● DS-GAN used to unfold CLAS detector effects (within acceptance)



•  Working towards the application of the developed 
machinery to CLAS12 pseudodata

•  If this procedure works well on CLAS and CLAS12 
data the architecture robustness is guaranteed

•  We can put together in a coherent way information 
from different kinematic regions

 CLAS12 Application

Tareq Alghamdi17 - Tareq Alghamdi AI4EIC  November 30, 2023  

Preliminary results
REC SYN vs REC pseudodata training variables

CLAS12 resolution



● We performed a positive closure test on 2pion photoproduction
● We demonstrated that GANs are a viable tool to unfold detector effects (smearing) to generate a 

synthetic copy of data
● We demonstrated that the original correlations are preserved
● Preserve data in an alternative compact and efficient form
● The uncertainty quantification of the entire procedure was assessed by combining a bootstrap for the 

two GANs
● For more information about this work, please refer to: 

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.094030

We are working on:

● Quantifying the systematic error introduced by the detector acceptance

●  Implementing this architecture into JLAB software in order to make it easily available to everyone

● Make this procedure an efficient way to analyze CLAS12 2𝜋 data

       Summary
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While there is still progress to be made in efficiently using AI to extract physics from data, we are moving in the right direction!

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.094030
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Thank you!





  Backup slides 



● Monte Carlo Event Generators:
○ Pythia
○ Herwig
○ Others

● Machine Learning based event generator:
○ Generative Adversarial Networks (GANs)
○ Variational Autoencoders (VAEs)
○ Normalizing Flows (NFs)

Event generators: 



Why do we need machine learning?

● Machine learning based has several attractive advantages over Monte-Carlo based, for example:

○ Machine learning based eliminates the theoretical assumptions.

• Capture more complex and realistic correlations. 

• The ability to capture a wide range of correlations present in the training data

○ Improved speed and efficiency

• Can generate millions of events within seconds.

○ Reduced need for multiple repositories.

•  Once the MLEG model is trained, it can serve as a single generator for producing events.

Motivation:



Data descriptions: PS-MC GEN, RE- MC GEN Events:

*GEANT is a system of detector description and simulation tools that help physicists in such studies.

● Data is generated using two different Monte Carlo 
event generators: PS-MC and RE-MC

● Folding GAN:
○ PS-MC: Phase-Space Monte Carlo dataset

● Unfolding GAN
○ RE-MC: Realistic  Monte Carlo dataset



What are Generative Adversarial Networks (GANs)?
● GAN* is a class of machine learning frameworks that typically consists of two adversarial NNs: 

a Generator & a Discriminator.

● The Generator takes random noise as inputs and is trained to generate synthetic samples 
from the problem domain.

● The Discriminator is trained to distinguish between samples drawn from the training data 
and those drawn from the Generator.

               
                 * GAN was developed in 2014 by Ian Goodfellow, et al.
            
       

                            

Discriminator

Generator

Training DATA
Sample

Random Noise Sample

Real/Fake



The distributions of events exhibit narrow peaks, holes, and steep edges, which pose difficulty to 
precisely learn physical laws.

Simulating particle collision events can be challenging:

PS-MC RE-MC



Challenge:

○ We need to model the event features and the correlations 

precisely for the nature of particle reactions to be 

faithfully replicated. 

○ For example, we need to examine:

○ Calculate the derived physics variables that we do NOT train on such as: M^2pπ+, t, tπ-,cosθ

○ Transfer the results of training invariants variables to another space (CM then to Lab frame)

○ Calculate the momentum resolution 𝑝 = (√𝑝2
x , 𝑝

2
y , 𝑝

2
z)(NOT train features)  

○ Calculate the 𝑝T = (√𝑝x * 𝑝x  + 𝑝y , 𝑝y)  (NOT train features)  

Derived quantities not used in the training



PS-MC

RE-MC

PS-MC: Phase-Space Monte Carlo event generator(1M events)
RE-MC: Realistic Monte Carlo event generator (400K events)

Overall Closure Test:



Detector Simulation (DS-GAN) using PS-MC pseudodata: 

Illustrative view of the ML detector simulation (DS-GAN), where the GAN generator converts input GEN vertex-level events 
features and noise to REC detector-level events. The training is performed on PS-MC pseudodata passed through the GEANT 
simulation. Synthetic REC and REC pseudodata are concatenated with GEN PS-MC events and fed to the discriminator.

Gamma

𝑀^2 𝑝𝝅-

𝑀^2 𝝅+𝝅-

𝘵𝝅+

Angle 𝛼[𝝅+p][𝝅-p’]

   Training variables:

*GEANT is a system of detector description and simulation tools that help physicists in such studies.



DS-GAN learned the CLAS detector effects!

DS-GAN Results:

       Derived variables (not used in the training)



DS-GAN Results:

DS-GAN learned the CLAS detector effects!

CLAS resolution

Another way to check the smearing is to consider all momenta

We define the energy of detector-level as,
We define the energy of vertex-level as,

Then we plot the difference between       
and          as a function of  

Truth

DS-GAN



Unfolding GAN  (Unf-GAN) using RE-MC pseudodata:

The UNF-GAN utilizes a generator that converts a GEN photon energy and random noise into synthetic GEN event features. 
These pass through the DS-GAN to incorporate the detector effect, and get converted into synthetic REC event features. 

● UNF-GAN trained with RE-MC REC pseudodata 
● DS-GAN used to unfold CLAS detector effects 



UNF-GAN Results:

● Using  REC RE-MC pseudodata to train the 
UNF-GAN, and extract the GEN-SYN 
distributions

Systematic of the full procedure (two GANs)
estimated by bootstrap with 20+20 independently
trained GANs



UNF-GAN Results:
       Derived variables (not used in the training)



Unfolding technique using ML:

*Andreassen, Anders, Patrick T. Komiske, Eric M. Metodiev, Benjamin 
Nachman, and Jesse Thaler. "OmniFold: A method to simultaneously unfold 
all observables." Physical review letters 124, no. 18 (2020): 182001.

Omnifold technique*:                                                            
● A novel approach for unfolding multiple 

observables simultaneously
● The OmniFold technique incorporates 

reweighting strategies.
●  Using neural networks
● Taking into account correlations between 

observables and using them to improve the 
unfolding of each individual observable.

● Works for high-dimensional data

How to GAN away Detector Effects*:

● A novel method to handle detector effects in 
high-energy physics experiments 

● This approach uses GAN.

● The aim of this study is to simulate the 
detector response.

*Bellagente, M., Butter, A., Kasieczka, G., Plehn, T., & Winterhalder, R. 
(2020). How to GAN away detector effects. SciPost Physics, 8(4), 070. 



● In the literature, GANs, VAEs, NFs, and their various improved architectures have been used to 

simulate physics events from different reactions and training datasets

● Two of them* reported that the LS-GAN yields better performance than other generative models

●  Better precision 

*Butter, Anja, and Tilman Plehn. "Generative Networks for LHC events." In Artificial intelligence for high energy physics, pp. 191-240. 2022.

*Otten, Sydney, et al. "Event generation and statistical sampling for physics with deep generative models and a density information buffer." Nature 
communications 12.1 (2021): 2985.

Other related work


