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Reinforcement Learning in Humans

GIPHY

Humans appear to learn behaviors through “trial and error”

GIPHY

https://media.giphy.com/media/WZAJppaL7MfQs/giphy.gif
https://media.giphy.com/media/zy1XfWctWtbUI/giphy.gif
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What is an example of Reinforcement Learning?

Reinforcement Learning from Human Feedback (RLHF)



What are other examples?

Games AI

https://youtu.be/8tq1C8spV_g


What are other examples?

Boston Dynamics Spot

https://bostondynamics.com/products/spot/


What are other examples?

Precision health

https://www.linkedin.com/pulse/5-ways-artificial-intelligence-may-affect-health-care-abhishek-goyal/


What are other examples?

Nuclear fusion plasma control

Degrave et al., Nature, 2022

https://deepmind.google/discover/blog/accelerating-fusion-science-through-learned-plasma-control/


Many Faces of Reinforcement Learning

Source: David Silver RL lecture

https://www.davidsilver.uk/teaching/


Branches of Machine Learning

Source: David Silver RL lecture

https://www.davidsilver.uk/teaching/


RL vs Supervised Learning?
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RL vs Supervised Learning?

• Action/decision is involved

• Reward signal (vs class label)

• Non i.i.d data: agent's actions affect the subsequent data it receives



Outline

• What is reinforcement learning?

• The reinforcement learning problem

• Value-based 

• Policy-based



The RL Problem
Environment



The RL Problem
Environment

Agent



The RL Problem
Environment

Agent

State 
!"



The RL Problem
Environment

Agent

State 
!"

Action 
#"



The RL Problem
Environment

Agent

Reward
!"#$

State 
%"

Action 
&"



The RL Problem
• The agent:
• Observes state !"
• Takes action #"
• Receives reward $"

• The environment:
• Receives action #"
• Emits next state !"%&
• Emits reward $"%'

• Iteration: ( → ( + 1
Agent

Env

Reward
$"%&
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The RL Problem: MDP

Agent

A Markov Decision Process (MDP) is a tuple 
< ",$,%,ℛ, ' >
• " is a finite set of states
• $ is a finite set of actions
• % is a state transition probability matrix
%))*+ = ℙ ./01 = 23 ./ = 2, 4/ = 5]

• ℛ is a reward function
ℛ)+ = 7 ℛ/01 ./ = 2, 4/ = 5]

• ' ∈ [0,1] is a discount factor

Definition (MDP)Env

Reward
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The RL Problem: Return

Return (total discounted reward)

!" = $"%& + ($"%) + ⋯
=+

,-.

/
(,$"%,%&
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The RL Problem: RL Agent

• An RL agent includes one or more of the 

following:

• Policy: agent's behavior function

• Value function: how good is each 

state and/or action

• Model: agent's representation of the 
environment
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The RL Problem: RL Agent

• An RL agent includes one or more of the 

following:

• Policy: agent's behavior function
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Policy

• A policy ! is a distribution over actions given states,

! " # = ℙ &' = " (' = #]



Value Function

• The action-value function !"($, &) of an MDP is the expected return 
starting from state $, taking action &, and then following policy (

!" $, & = *" +, -, = $, .,= &]



RL Taxonomy

Source: David Silver RL lecture

https://www.davidsilver.uk/teaching/


This Tutorial

Source: David Silver RL lecture

https://www.davidsilver.uk/teaching/


Value-based: 

Find optimal !∗ #, % as proxy 
of policy:

&∗ ', ( = max
-

&-(', ()

Policy-based:

Directly find optimal 0∗ % # :

1∗ ( ' = argmax
-

4- '

This Tutorial
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• The reinforcement learning problem

• Value-based 

• Policy-based



Q-Learning: Training Procedure
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &)
• Take the action and observe next state and reward

• Update "($, &) for the current state-action pair

• Move to the next state

RewardState Action 
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Q-Learning: Policy

• Policy ! is derived from actioin value function " #, % , e.g., &-greedy
for exploration

'( = *argmax01 " 2(, %1 , with prob. 1 − &
any %, with prob. &



Q-Learning: Training Procedure
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &)
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Q-Learning: Bellman Optimality Equation

! ", $ ← ! ", $ + ' ( + ) max-.! "′, 0′ − ! ", $
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Q-Learning: Bellman Optimality Equation

! ", $ ← ! ", $ + ' ( + ) max-.! "′, 0′ − ! ", $

Target Predicted



Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.
• Backgammon: 10#$ states
• Computer Go: 10%&$ states
• Helicopter: continuous state space

• Tabular Q-Learning for large MDPs:
• Memory: too many states and/or actions to store
• Computation: too slow to learn the value of each state individually



Value Function Approximation

• Solution for large MDPs:
• Estimate value function with function approximation

• e.g., deep neural networks
!" #, %,& ≈ "( #, %



Types of Value Function Approximation

Action-in Action-out



Recall: Training of Tabular Q-Learning
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &)
• Take the action and observe next state and reward

• Update "($, &) for the current state-action pair

• Move to the next state

RewardState Action 



Training Procedure of DQN
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &,')
• Take the action and observe next state and reward

• Update "($, &,') for the current state-action pair

• Move to the next state

RewardState Action 



DQN vs Tabular Q-Learning
1. Q-function approximation w DNNs

• Optimize MSE between prediction and target using SGD

ℒ" #" = %&,(,),&*∼, - + / max
(3

4 53, 63; #" − 4 5, 6; #"
9

2. Experience replay

• Store transition (5, 6, -, 5′) in replay memory ,
• Repeatedly sample random mini-batch of transitions from ,

3. Fixed Q-targets

• Compute Q-learning targets w.r.t. old, fixed parameters =>



DQN for Atari Games

Mnih et al., Human-level control through deep reinforcement learning, Nature, 2015



DQN Results in Atari Games



Variants of DQN

• Success in Atari has led to huge excitement in DQN

• Some immediate and most successful improvements 

• Double DQN (Van Hasselt et al, AAAI 2016)

• Prioritized Experience Replay (Schaul et al, ICLR 2016)

• Dueling DQN (Wang et al, ICML 2016)

• Raibow (Hessel, Matteo, et al. AAAI 2018)



Rainbow

Hessel, Matteo, et al. 2018 

DDQN + PER + Dueling DQN 
+ Other improvements:
• n-step learning
• Distributional RL
• Noisy Nets



Example 
DQN Code

[Source: RLZoo – DQN and variants]

https://rlzoo.readthedocs.io/en/latest/algorithms/dqn.html


DQNs Summary
• Q-learning is a value-based method

• selects action based on policy derived from Q-function

• updates/learns Q with Bellman equation

• DQN improves Q-learning with DNNs for function approximation, 

experience replay, and fixed Q-targets

• DQN is further improved with ideas such as Double DQN, PER, 

Dueling DQN



Outline
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Value-based: 

Find optimal !∗ #, % as proxy 
of policy:

&∗ ', ( = max
-

&-(', ()

Policy-based:
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1∗ ( ' = argmax
-

4- '
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Downsides of Q-Learning vs PG

• Cannot handle high-dimensional or continuous action spaces

• Cannot learn stochastic policies

• E.g., rock-paper-scissor

• Not directly optimizing the objective, but MSE



RL as Policy Optimization

• Policy based reinforcement learning is an optimization problem
• Find !" that maximizes # $ ≡ &'( ) = +'( &()) :

!"∗ / ) = argmax
'

# $



Recall: Training of Tabular Q-Learning
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &)
• Take the action and observe next state and reward

• Update "($, &) for the current state-action pair

• Move to the next state

RewardState Action 



Training of Policy Gradient Method
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action directly based on policy !"
• Take the action and observe next state and reward

• Update the policy !" in the direction that increases expected 
cumulative reward

• Move to the next state

RewardState Action 
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Training of Policy Gradient Method
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action directly based on policy !
• Take the action and observe next state and reward

• Update the policy ! in the direction that increases expected 
cumulative reward

• Move to the next state

RewardState Action 

For any differentiable policy !" #, % , the policy gradient is

∇"' ( = *+, ∇"log !" #, % 0+,(#, %)

Policy Gradient Theorem (roughly)



Practical Policy Gradient Algorithms

The policy gradient has many forms – based on how !"#(%, ') is estimated

∇*+ , = ."# ∇*log 2* %, ' !"#(%, ') Explicit PG

= ."# ∇*log 2* %, ' !3(%, ') Q Actor-Critic

= ."# ∇*log 2* %, ' 43(%, ') Advantage Actor-Critic (A2C)

43 %, ' = !3 %, ' − 63(%)

= ."# ∇*log 2* %, ' 78 REINFORCE



Downsides of PG Methods

• Hard to choose step sizes
• Input data is nonstationary due to changing policy
• Bad step is more damaging than in supervised learning

• Sample efficiency
• Only one gradient step per environment sample 



Trust Region Policy Optimization (TRPO) 
• Policy optimization as a constrained optimization

max$ %&'
($ )' *'
($+,- )' *'

./'

s.t. %&' 01 ($+,- ⋅ *' , ($ ⋅ *' ≤ 5

• Alternatively, constraint as a penalty

max$ %&'
($ )' *'
($+,- )' *'

./' − 7%&' 01 ($+,- ⋅ *' , ($ ⋅ *'

Schulman et al., 2015



Proximal Policy Optimization (PPO)
• PPO forms a lower bound objective by clipped importance scores:

• Let !" # = %& '" ("
%&)*+ '" ("

,-./0 # = 12" min !" # 67", clip !" # , 1 − >, 1 + > 67"

Schulman et al. 2017



PPO on Roboschool

Source: https://openai.com/research/openai-baselines-ppo



Example 
PPO code

Source: RLZoo - PPO

https://rlzoo.readthedocs.io/en/latest/algorithms/ppo.html


Practical Tips of Implementing PPO

Source: The 37 Implementation Details of Proximal Policy Optimization

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/


Policy Gradient Summary

• Policy gradient methods get actions directly from learned policies
• Updates policy based on policy gradient (REINFORCE)

• A2C/A3C  improves vanilla PG by the advantage function

• TRPO/PPO improves vanilla PG by constraining/penalizing large policy 
updates



Reinforcement Learning Summary
• The reinforcement learning problem
• MDP
• Elements of RL agent: policy, value, model

• Value-based 
• Q-Learning
• DQN, DDQN, PER, Dueling DQN, Rainbow

• Policy-based
• REINFORCE
• A2C/A3C
• TRPO, PPO



Useful coding resources

• RLZoo (Tensorflow)

• Stable-baselines3

• OpenAI Spinning Up

• OpenAI Gymnasium

https://rlzoo.readthedocs.io/en/latest/index.html
https://stable-baselines3.readthedocs.io/en/master/
https://spinningup.openai.com/en/latest/
https://github.com/Farama-Foundation/Gymnasium
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Thank you! 
Email request for slides to hchen23@wm.edu
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