REINFORCEMENT LEARNING

@AI4EIC 2023

WILLIAM

& MARY

DATA SCIEN

Haipeng Chen

Assistant professor, Data Science hchen23@wm.edu

Reinforcement Learning in Humans

<u>GIPHY</u>

GIPHY

Humans appear to learn behaviors through "trial and error"

What is reinforcement learning?

Reinforcement Learning (RL) is a type of machine learning that focuses on training algorithms to make sequences of decisions to maximize a reward signal. It's inspired by behavioral psychology, where learning occurs through interaction with an environment to achieve specific goals. In RL, an agent interacts with an environment, learns from its actions, and adapts its behavior to achieve better outcomes over time.

 $[\mathcal{U}]$

What is reinforcement learning?

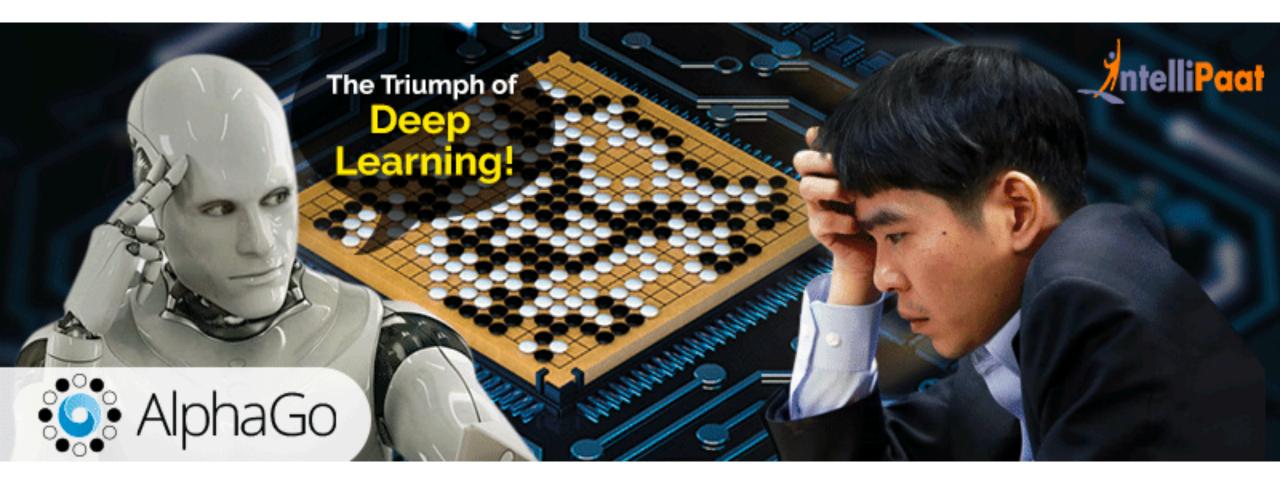
\$

Reinforcement Learning (RL) is a type of machine learning that focuses on training algorithms to make sequences of decisions to maximize a reward signal. It's inspired by behavioral psychology, where learning occurs through interaction with an environment to achieve specific goals. In RL, an agent interacts with an environment, learns from its actions, and adapts its behavior to achieve better outcomes over time.

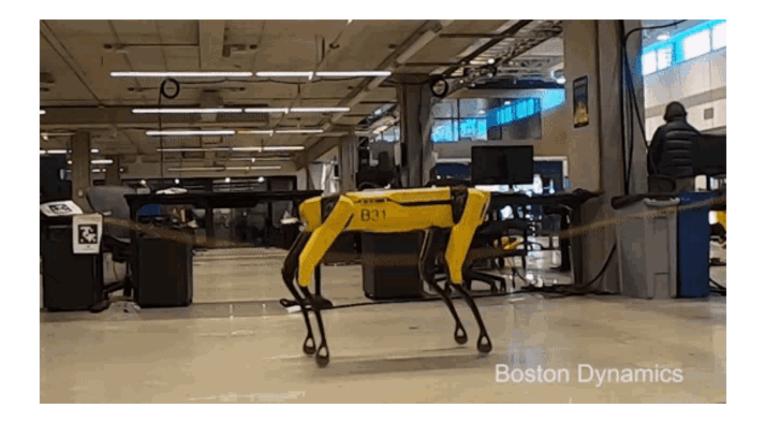
 $[\mathcal{U}]$

What is reinforcement learning?

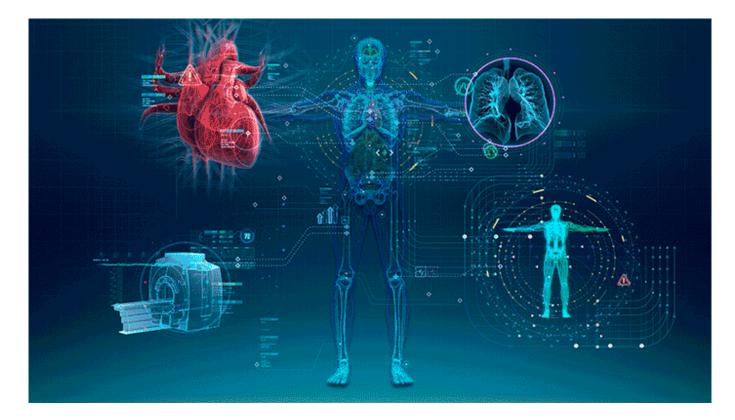
aviavioral proceeding occurs through interact. Me of models from Human Feedback (RLHF) inavioral proceeding occurs through interact. Me of models of models of the second signal. It's include the second signal is a second se



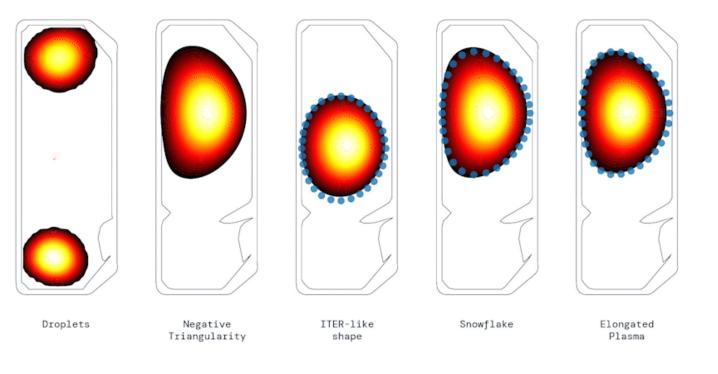
Games Al



Boston Dynamics Spot



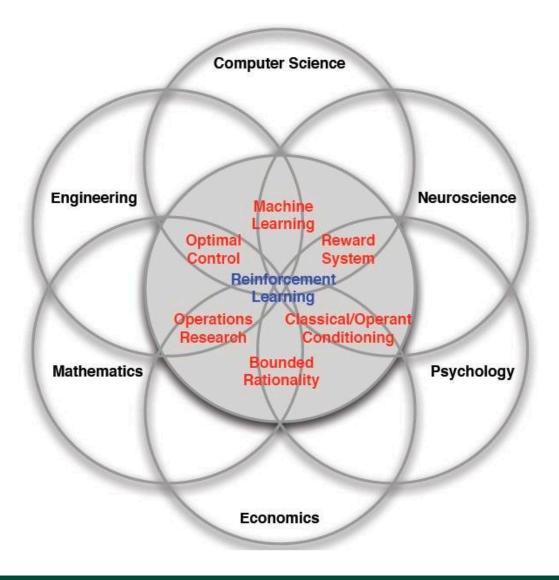
Precision health



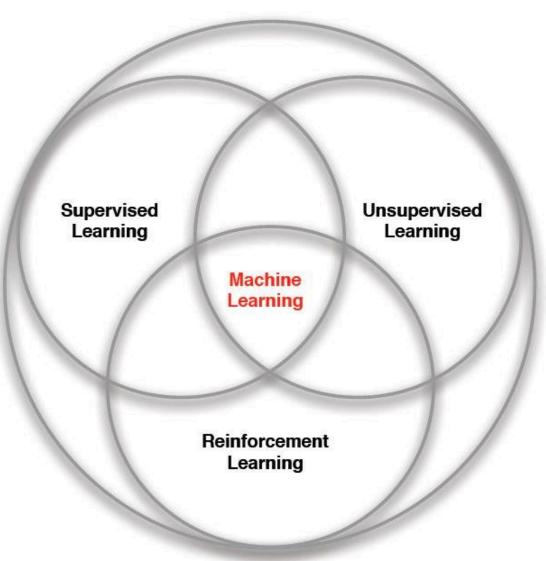
Nuclear fusion plasma control

Degrave et al., Nature, 2022

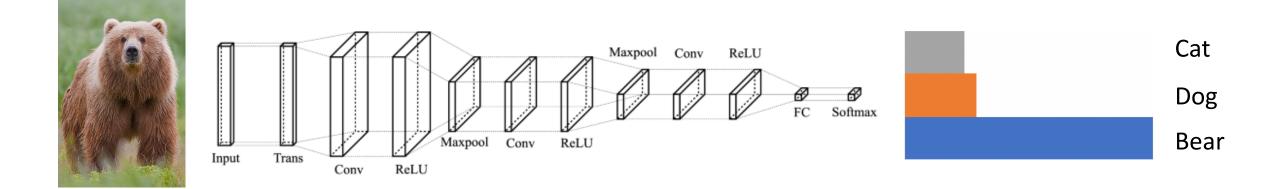
Many Faces of Reinforcement Learning

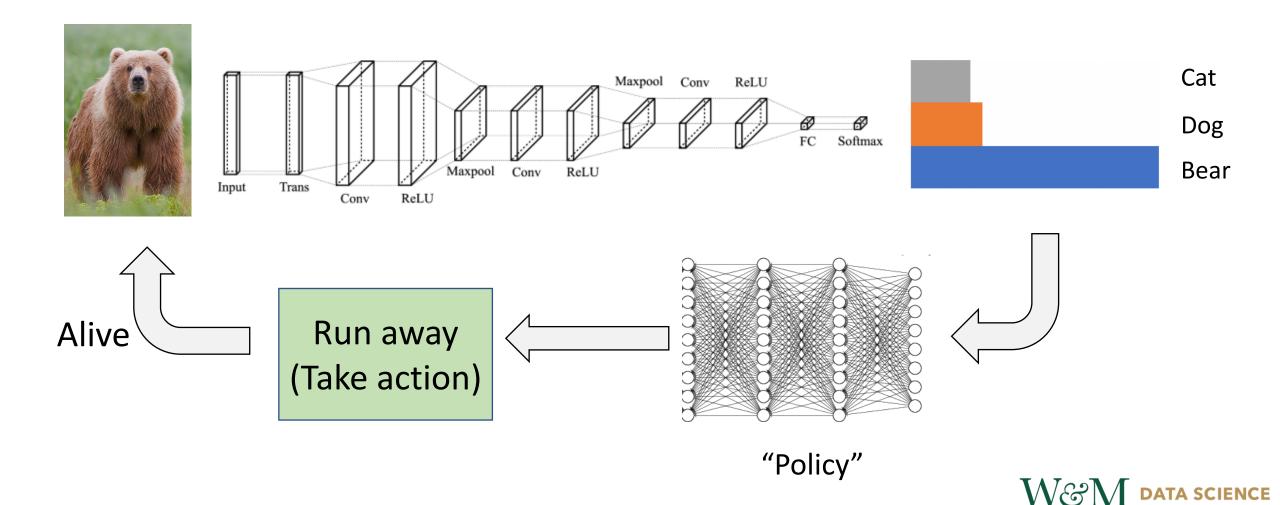


Branches of Machine Learning



Source: David Silver RL lecture





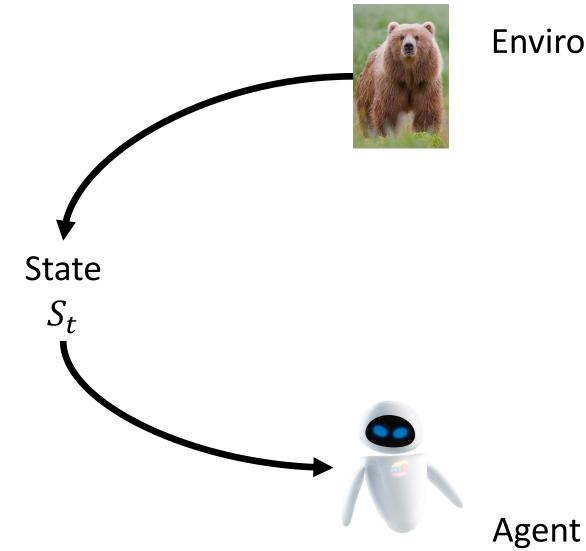
- Action/decision is involved
- Reward signal (vs class label)
- Non i.i.d data: agent's actions affect the subsequent data it receives

Outline

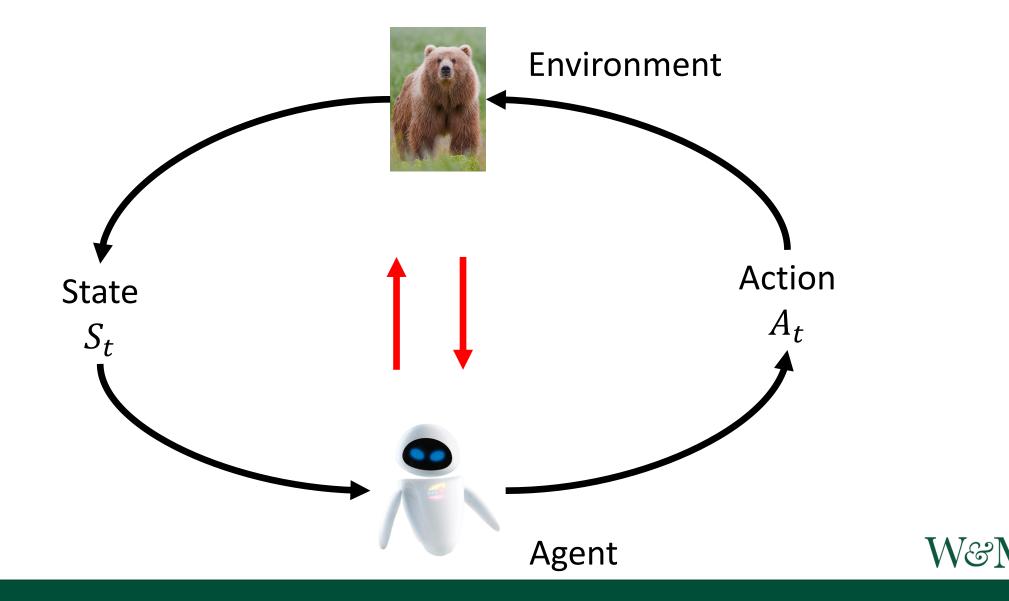
- What is reinforcement learning?
- The reinforcement learning problem
- Value-based
- Policy-based

Environment

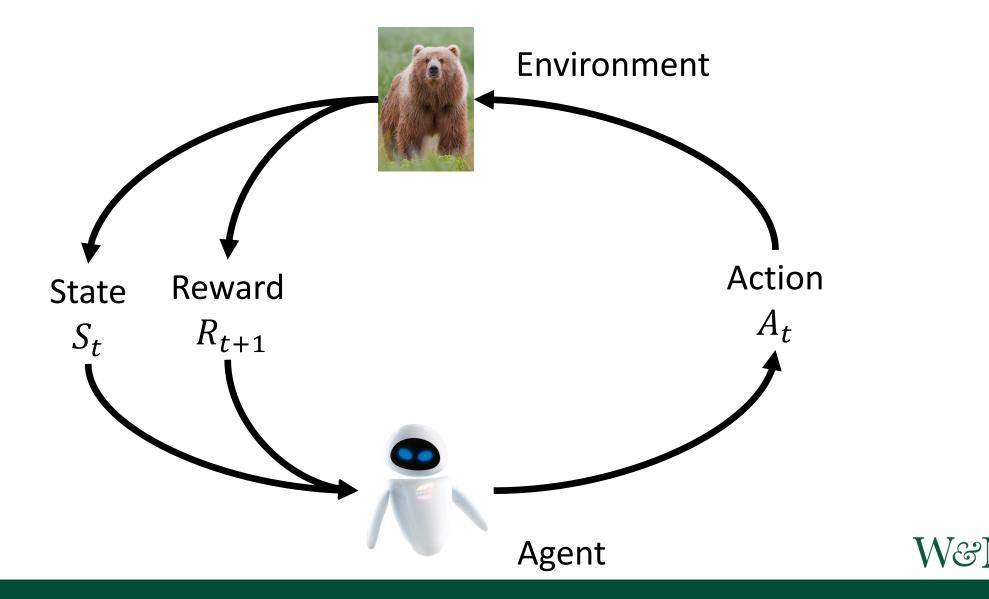
Environment



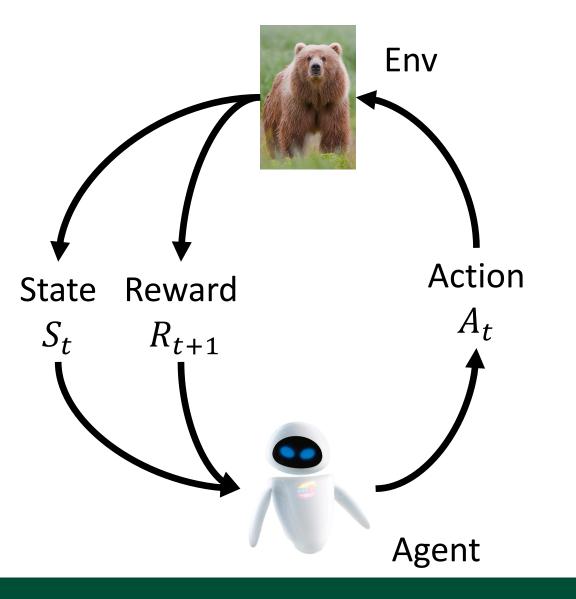
Environment



DATA SCIENCE

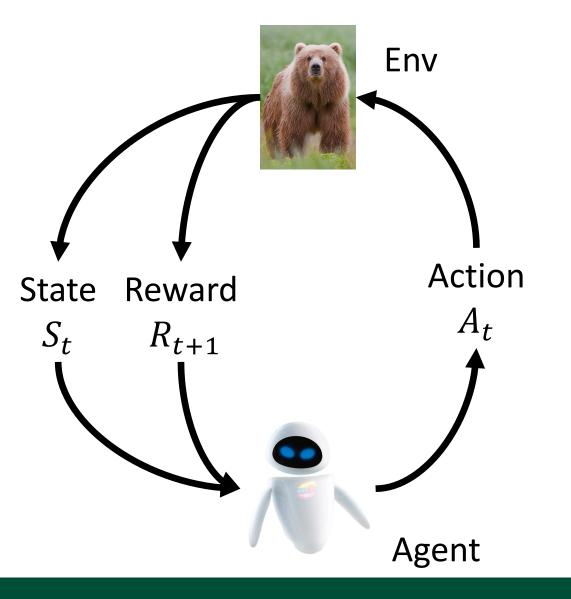


DATA SCIENCE



- The agent:
 - Observes state S_t
 - Takes action A_t
 - Receives reward R_t
- The environment:
 - Receives action A_t
 - Emits next state S_{t+1}
 - Emits reward R_{t+1}
- Iteration: $t \rightarrow t + 1$

The RL Problem: MDP



Definition (MDP)

A Markov Decision Process (MDP) is a tuple $< S, A, P, R, \gamma >$

- S is a finite set of states
- *A* is a finite set of actions
- \mathcal{P} is a state transition probability matrix

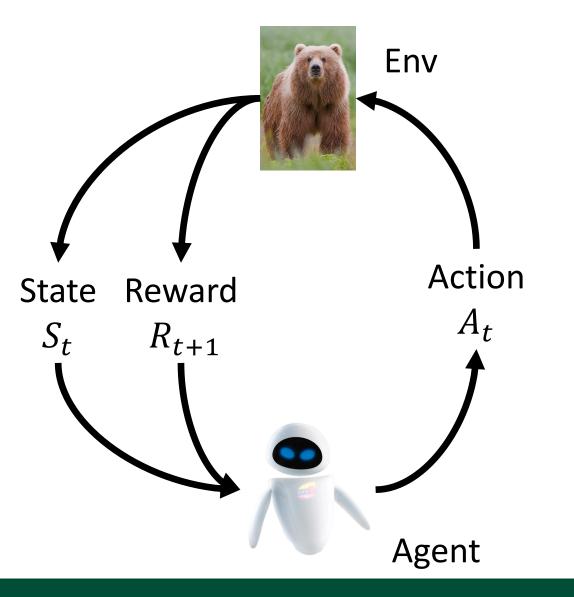
$$\mathcal{P}^a_{ss'} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

• \mathcal{R} is a reward function

 $\mathcal{R}_s^a = \mathbb{E}[\mathcal{R}_{t+1} \mid S_t = s, A_t = a]$

• $\gamma \in [0,1]$ is a discount factor

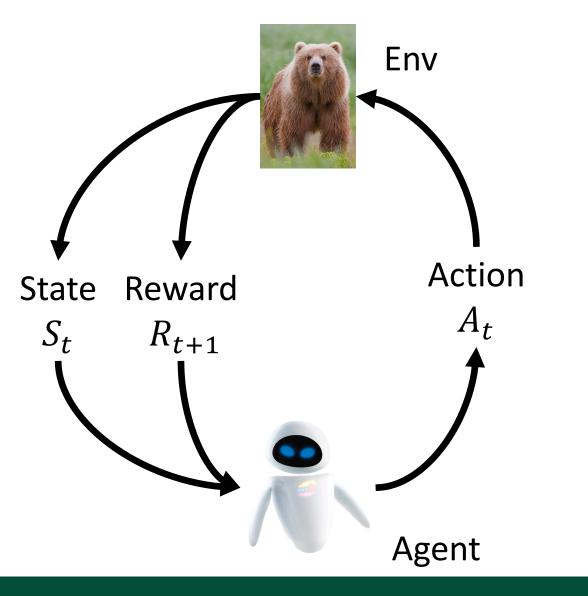
The RL Problem: Return



Return (total discounted reward)

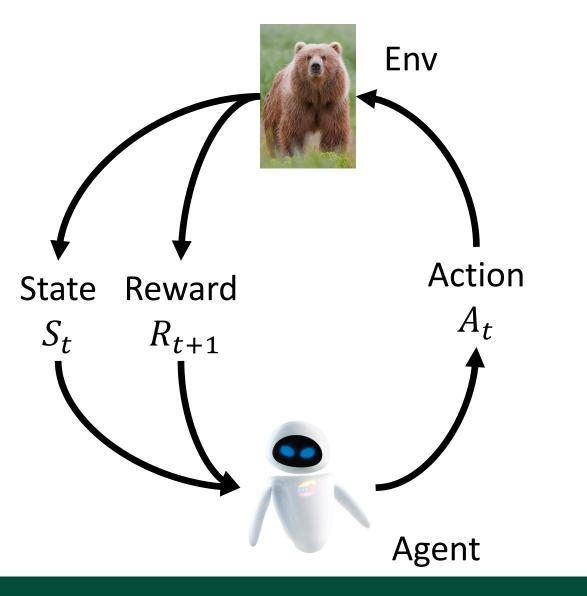
$$G_t \stackrel{=}{\underset{\tau=0}{=}} R_{t+1} + \gamma R_{t+2} + \cdots$$
$$= \sum_{\tau=0} \gamma^{\tau} R_{t+\tau+1}$$

The RL Problem: RL Agent



- An RL agent includes one or more of the following:
 - Policy: agent's behavior function
 - Value function: how good is each state and/or action
 - Model: agent's representation of the environment

The RL Problem: RL Agent



- An RL agent includes one or more of the following:
 - Policy: agent's behavior function
 - Value function: how good is each
 - state and/or action
 - Model: agent's representation of the
 - environment

Policy

• A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}[A_t = a \mid S_t = s]$$

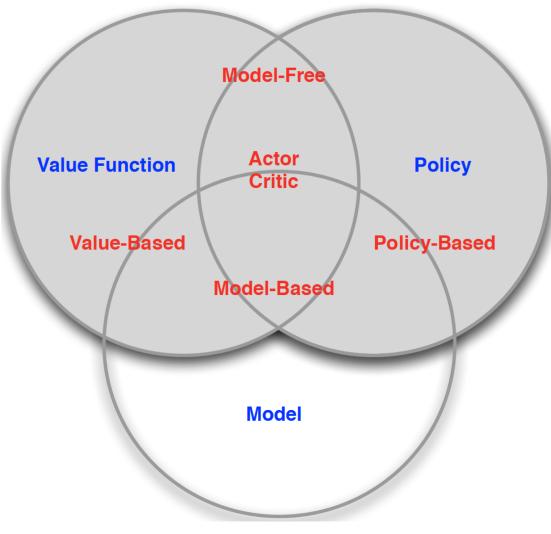
$${
m W}{
m C}{
m M}$$
 data science

Value Function

• The action-value function $q_{\pi}(s, a)$ of an MDP is the expected return starting from state s, taking action a, and then following policy π

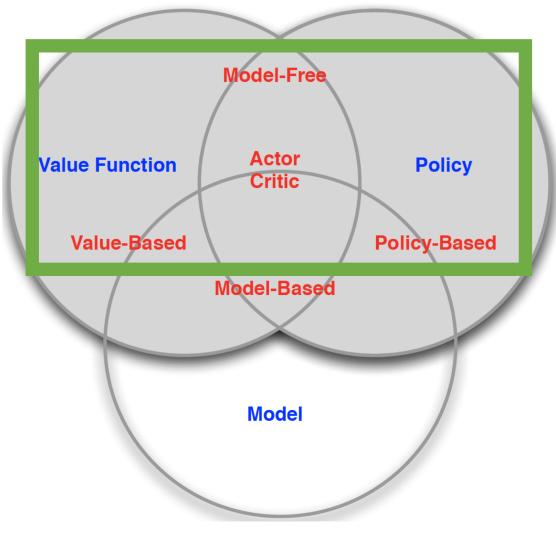
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

RL Taxonomy



Source: David Silver RL lecture

This Tutorial



Source: David Silver RL lecture

This Tutorial

Value-based:

Find **optimal** $q^*(s, a)$ as proxy of policy:

$$q^*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Policy-based:

Directly find **optimal** $\pi^*(a|s)$:

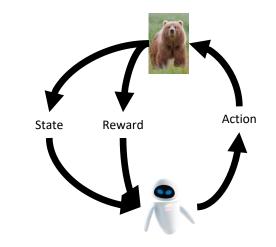
$$\pi^*(a|s) = \operatorname*{argmax}_{\pi} v^{\pi}(s)$$

Outline

- What is reinforcement learning?
- The reinforcement learning problem
- Value-based
- Policy-based

Q-Learning: Training Procedure

- For each training episode:
 - Start in the initial state:
 - Loop until a terminal state is reached:
 - Choose an action based on policy π derived from Q(s, a)
 - Take the action and observe next state and reward
 - Update Q(s, a) for the current state-action pair
 - Move to the next state



Q-Learning: Training Procedure

- For each training episode:
 - Start in the initial state:

State Reward Action

- Loop until a terminal state is reached:
 - Choose an action based on policy π derived from Q(s, a)
 - Take the action and observe next state and reward
 - Update Q(s, a) for the current state-action pair
 - Move to the next state

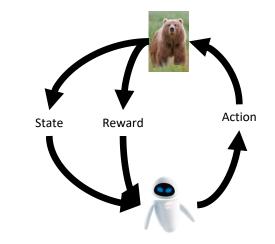
Q-Learning: Policy

• Policy π is derived from action value function Q(s, a), e.g., ϵ -greedy for exploration

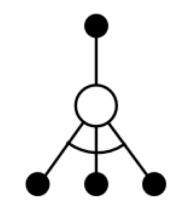
$$A_{t} = \begin{cases} \operatorname{argmax}_{a'} Q(S_{t}, a'), & \text{with prob. } 1 - \epsilon \\ \text{with prob. } \epsilon \end{cases}$$

Q-Learning: Training Procedure

- For each training episode:
 - Start in the initial state:
 - Loop until a terminal state is reached:
 - Choose an action based on policy π derived from Q(s, a)
 - Take the action and observe next state and reward
 - Update Q(s, a) for the current state-action pair
 - Move to the next state

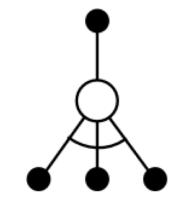


Q-Learning: Bellman Optimality Equation



$$Q(S,A) \leftarrow Q(S,A) + \alpha \Big(R + \gamma \max_{a'} Q(S',a') - Q(S,A) \Big)$$

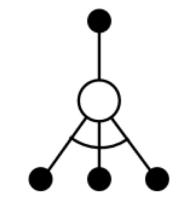
Q-Learning: Bellman Optimality Equation



$$Q(S,A) \leftarrow Q(S,A) + \alpha \Big(R + \gamma \max_{a'} Q(S',a') - Q(S,A) \Big)$$

$$\Box$$
Target

Q-Learning: Bellman Optimality Equation



$$Q(S,A) \leftarrow Q(S,A) + \alpha \Big(R + \gamma \max_{a'} Q(S',a') - Q(S,A) \Big)$$

$$\Box$$

$$Target$$
Predicted

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve *large* problems, e.g.

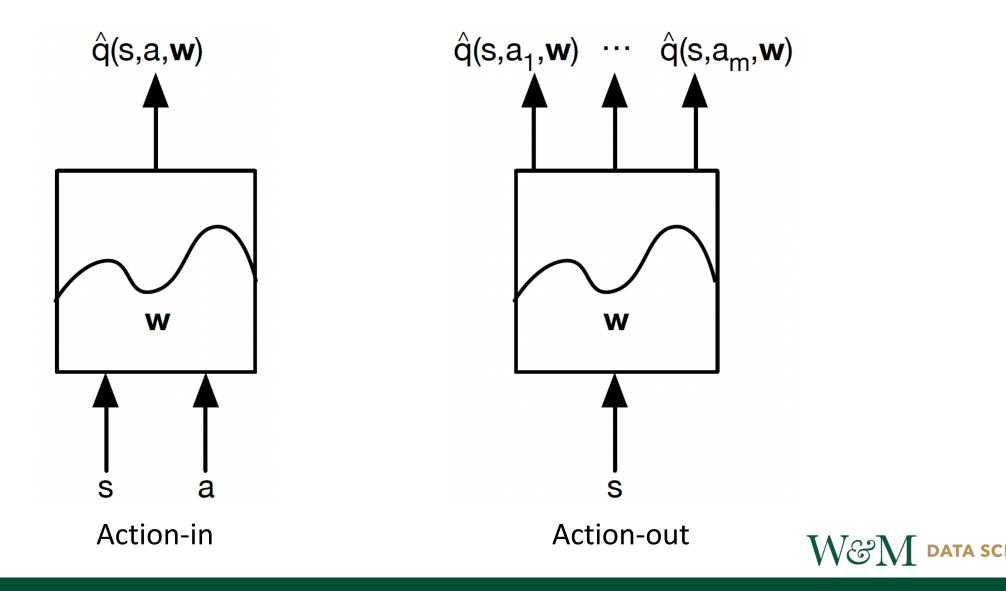
- Backgammon: 10^{20} states
- Computer Go: 10^{170} states
- Helicopter: continuous state space
- Tabular Q-Learning for large MDPs:
 - *Memory*: too many states and/or actions to store
 - Computation: too slow to learn the value of each state individually

Value Function Approximation

- Solution for large MDPs:
 - Estimate value function with function approximation
 - e.g., deep neural networks

 $\hat{q}(s, a, w) \approx q_{\pi}(s, a)$

Types of Value Function Approximation



NCE

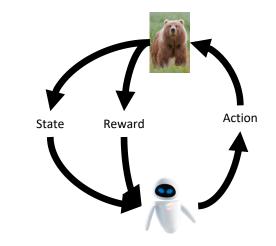
Recall: Training of Tabular Q-Learning

- For each training episode:
 - Start in the initial state:
 - Loop until a terminal state is reached:
 - Choose an action based on policy π derived from Q(s, a)
 - Take the action and observe next state and reward
 - Update Q(s, a) for the current state-action pair
 - Move to the next state

State

Training Procedure of DQN

- For each training episode:
 - Start in the initial state:
 - Loop until a terminal state is reached:
 - Choose an action based on policy π derived from Q(s, a, w)
 - Take the action and observe next state and reward
 - Update Q(s, a, w) for the current state-action pair
 - Move to the next state



DQN vs Tabular Q-Learning

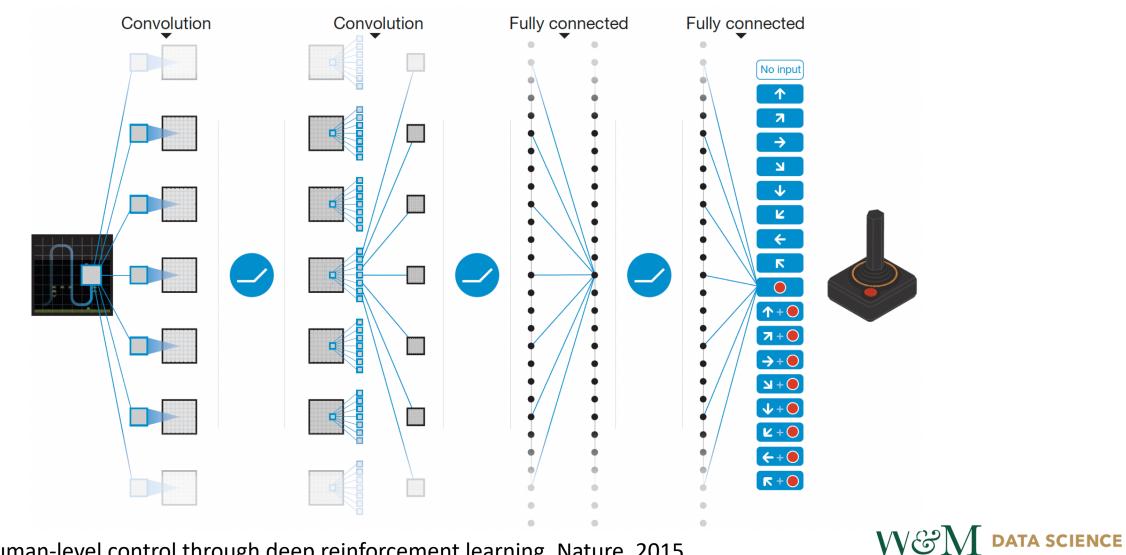
- 1. Q-function approximation w DNNs
 - Optimize MSE between prediction and target using SGD

$$\mathcal{L}_{i}(w_{i}) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}}\left[\left(r + \gamma \max_{a'} Q(s',a';w_{i}) - Q(s,a;w_{i})\right)^{2}\right]$$

- 2. Experience replay
 - Store transition (s, a, r, s') in replay memory \mathcal{D}
 - \bullet Repeatedly sample random mini-batch of transitions from ${\mathcal D}$
- 3. Fixed Q-targets
 - Compute Q-learning targets w.r.t. old, fixed parameters w^-

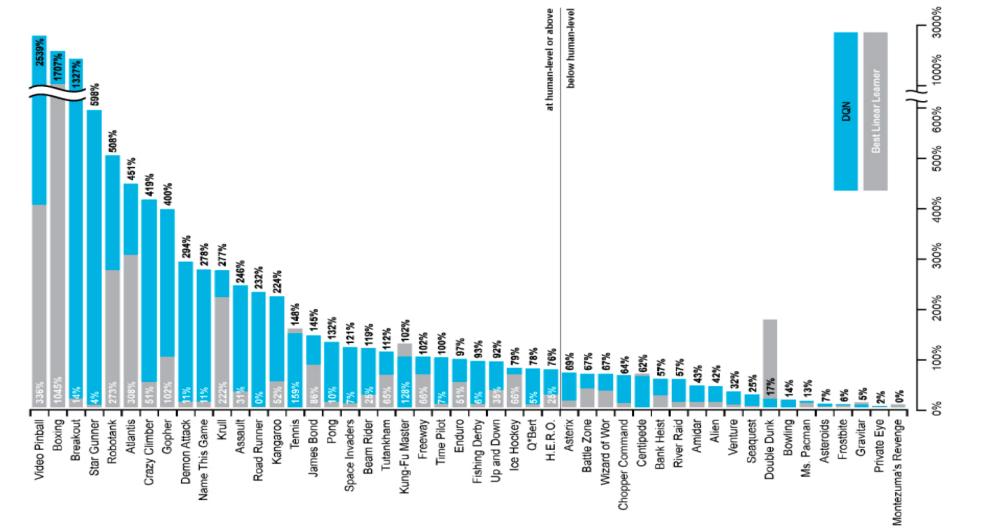
 \mathbf{n}

DQN for Atari Games



Mnih et al., Human-level control through deep reinforcement learning, Nature, 2015

DQN Results in Atari Games



 \mathbb{W} data science

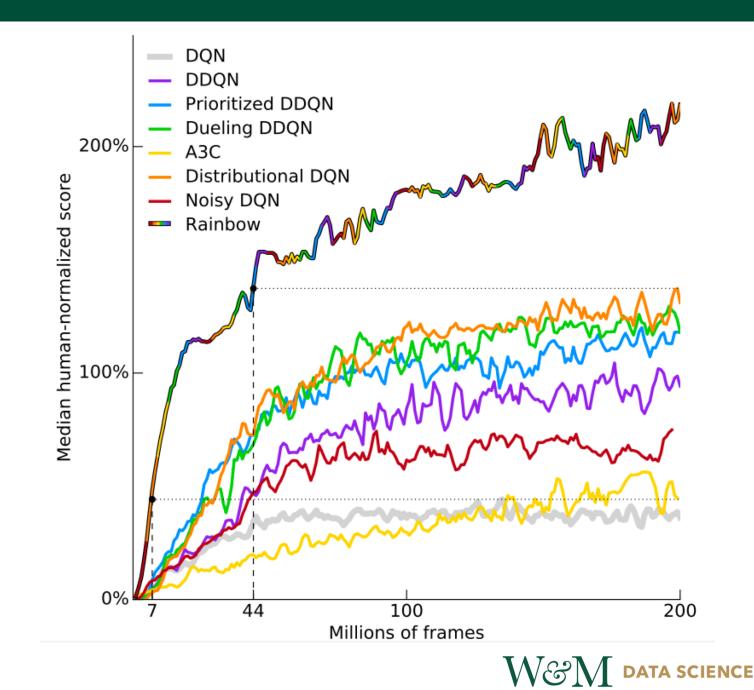
Variants of DQN

- Success in Atari has led to huge excitement in DQN
- Some immediate and most successful improvements
 - Double DQN (Van Hasselt et al, AAAI 2016)
 - Prioritized Experience Replay (Schaul et al, ICLR 2016)
 - **Dueling DQN** (Wang et al, ICML 2016)
 - Raibow (Hessel, Matteo, et al. AAAI 2018)

Rainbow

DDQN + PER + Dueling DQN + Other improvements:

- n-step learning
- Distributional RL
- Noisy Nets



Example DQN Code

DQN and Variants

Example

```
from rlzoo.common.env_wrappers import build_env
 1
      from rlzoo.common.utils import call_default_params
 2
      from rlzoo.algorithms import DQN
 3
 4
      AlgName = 'DQN'
 5
 6
       EnvName = 'PongNoFrameskip-v4'
       EnvType = 'atari'
 7
 8
      # EnvName = 'CartPole-v1'
 9
10
      # EnvType = 'classic_control' # the name of env needs to match the type of env
11
12
       env = build_env(EnvName, EnvType)
       alg_params, learn_params = call_default_params(env, EnvType, AlgName)
13
14
       alg = eval(AlgName+'(**alg params)')
15
       alg.learn(env=env, mode='train', **learn_params)
       alg.learn(env=env, mode='test', render=True, **learn_params)
16
```

Deep Q-Networks

class rlzoo.algorithms.dqn.dqn.DQN(net_list, optimizers_list, double_q, dueling, buffer_size, prioritized_replay, prioritized_alpha, prioritized_beta0) [source]

[Source: RLZoo – DQN and variants]

DQNs Summary

- Q-learning is a value-based method
 - selects action based on policy derived from Q-function
 - updates/learns Q with Bellman equation
- DQN improves Q-learning with DNNs for function approximation, experience replay, and fixed Q-targets
- DQN is further improved with ideas such as Double DQN, PER, Dueling DQN

Outline

- What is reinforcement learning?
- The reinforcement learning problem
- Value-based
- Policy-based

This Tutorial

Value-based:

Find **optimal** $q^*(s, a)$ as proxy of policy:

$$q^*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Policy-based:

Directly find **optimal** $\pi^*(a|s)$:

$$\pi^*(a|s) = \operatorname*{argmax}_{\pi} v^{\pi}(s)$$

Downsides of Q-Learning vs PG

- Cannot handle high-dimensional or continuous action spaces
- Cannot learn stochastic policies
 - E.g., rock-paper-scissor
- Not directly optimizing the objective, but MSE

RL as Policy Optimization

- Policy based reinforcement learning is an optimization problem
- Find π_{θ} that maximizes $J(\theta) \equiv v^{\pi_{\theta}}(s) = \mathbb{E}_{\pi_{\theta}}[v(s)]$:

$$\pi_{\theta}^{*}(a|s) = \operatorname*{argmax}_{\pi} J(\theta)$$

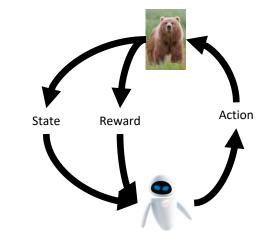
Recall: Training of Tabular Q-Learning

- For each training episode:
 - Start in the initial state:
 - Loop until a terminal state is reached:
 - Choose an action based on policy π derived from Q(s, a)
 - Take the action and observe next state and reward
 - Update Q(s, a) for the current state-action pair
 - Move to the next state

State

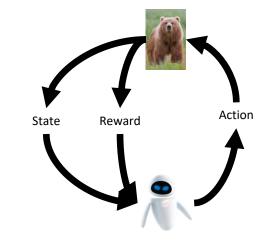
Training of Policy Gradient Method

- For each training episode:
 - Start in the initial state:
 - Loop until a terminal state is reached:
 - Choose an action directly based on policy π_{θ}
 - Take the action and observe next state and reward
 - Update the policy π_{θ} in the direction that increases expected cumulative reward
 - Move to the next state



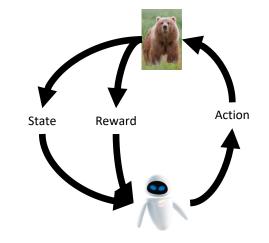
Training of Policy Gradient Method

- For each training episode:
 - Start in the initial state:
 - Loop until a terminal state is reached:
 - Choose an action directly based on policy $\pi_{ heta}$
 - Take the action and observe next state and reward
 - Update the policy π_{θ} in the direction that increases expected cumulative reward
 - Move to the next state



Training of Policy Gradient Method

- For each training episode:
 - Start in the initial state:



Policy Gradient Theorem (roughly)

For any differentiable policy $\pi_{\theta}(s, a)$, the policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \, Q^{\pi_{\theta}}(s, a)]$$

• Move to the next state

Practical Policy Gradient Algorithms

The policy gradient has many forms – based on how $Q^{\pi_{\theta}}(s, a)$ is estimated

$$\begin{aligned} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q^{\pi_{\theta}}(s, a)] & \text{Explicit PG} \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \ G_{t}] & \text{REINFORCE} \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q^{w}(s, a)] & \text{QActor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \ A^{w}(s, a)] & \text{Advantage Actor-Critic (A2C)} \\ & A^{w}(s, a) = Q^{w}(s, a) - V^{w}(s) \end{aligned}$$

Downsides of PG Methods

- Hard to choose step sizes
 - Input data is nonstationary due to changing policy
 - Bad step is more damaging than in supervised learning
- Sample efficiency
 - Only one gradient step per environment sample

Trust Region Policy Optimization (TRPO)

• Policy optimization as a constrained optimization

$$\max_{\theta} \qquad \widehat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \, \hat{A}_t \right]$$

s.t.
$$\widehat{\mathbb{E}}_t \left[KL \left[\pi_{\theta_{\text{old}}}(\cdot | s_t), \pi_{\theta}(\cdot | s_t) \right] \right] \le \delta$$

• Alternatively, constraint as a penalty

$$\max_{\theta} \qquad \widehat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)} \, \hat{A}_t \right] - \beta \widehat{\mathbb{E}}_t \left[KL[\pi_{\theta_{\text{old}}}(\cdot | s_t), \pi_{\theta}(\cdot | s_t)] \right]$$

Schulman et al., 2015

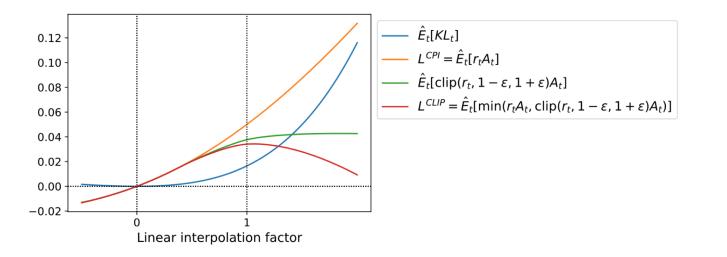
Proximal Policy Optimization (PPO)

- PPO forms a lower bound objective by clipped importance scores:
- Let $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}$

1

$$L^{CLIP}(\theta) = \widehat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

ATA SCIENCE



Schulman et al. 2017

PPO on Roboschool



Source: https://openai.com/research/openai-baselines-ppo

Example PPO code

```
from rlzoo.common.env_wrappers import build_env
 1
       from rlzoo.common.utils import call_default_params
 2
 3
       from rlzoo.algorithms import PP0
 4
 5
       EnvName = 'PongNoFrameskip-v4'
 6
       EnvType = 'atari'
 7
 8
       \# EnvName = 'Pendulum-v0'
 9
       # EnvType = 'classic_control'
10
11
      # EnvName = 'BipedalWalker-v2'
12
       # EnvType = 'box2d'
13
14
      \# EnvName = 'Ant-v2'
      # EnvType = 'mujoco'
15
16
      # EnvName = 'FetchPush-v1'
17
18
       # EnvType = 'robotics'
19
20
      # EnvName = 'FishSwim-v0'
21
       # EnvType = 'dm control'
22
23
       # EnvName = 'ReachTarget'
24
       # EnvType = 'rlbench'
25
26
       env = build_env(EnvName, EnvType)
27
       alg_params, learn_params = call_default_params(env, EnvType, 'PPO')
       alg = PPO(method='clip', **alg_params) # specify 'clip' or 'penalty' method for PPO
28
29
       alg.learn(env=env, mode='train', render=False, **learn_params)
30
       alg.learn(env=env, mode='test', render=False, **learn_params)
```


Source: <u>RLZoo - PPO</u>

Practical Tips of Implementing PPO

RL Library	GitHub Stars	Benchmark Source	Breakout	Pong	BeamRider	Hopper	Walker2d	HalfCheetah
Baselines pposgd / ppo1 (da99706)	stars 15k	paper (\$)	274.8	20.7	1590	~2250	~3000	~1750
Baselines ppo2 (7bfbcf1 and ea68f3b)		docs (*)	114.26	13.68	1299.25	2316.16	3424.95	1668.58
Baselines ppo2 (ea25b9e)		this blog post (*)	409.265 ± 30.98	20.59 ± 0.40	2627.96 ± 625.751	2448.73 ± 596.13	3142.24 ± 982.25	2148.77 ± 1166.023
Stable- Baselines3	stars 6.8k	docs (0) (^)	398.03 ± 33.28	20.98 ± 0.10	3397.00 ± 1662.36	2410.43 ± 10.02	3478.79 ± 821.70	5819.09 ± 663.53
CleanRL	stars 3.6k	docs (1) (*)	~402	~20.39	~2131	~2685	~3753	~1683
Tianshou	stars 6.9k	paper, docs (5) (^)	~400	~20	-	7337.4 ± 1508.2	3127.7 ± 413.0	4895.6 ± 704.3
Ray/RLlib	stars 29k	repo (2) (*)	201	-	4480	-	-	9664
SpinningUp	stars 9k	docs (3) (^)	-	-	-	~2500	~2500	~3000

Source: The 37 Implementation Details of Proximal Policy Optimization

Policy Gradient Summary

- Policy gradient methods get actions directly from learned policies
 - Updates policy based on policy gradient (REINFORCE)
- A2C/A3C improves vanilla PG by the advantage function
- TRPO/PPO improves vanilla PG by constraining/penalizing large policy updates

Reinforcement Learning Summary

- The reinforcement learning problem
 - MDP
 - Elements of RL agent: policy, value, model
- Value-based
 - Q-Learning
 - DQN, DDQN, PER, Dueling DQN, Rainbow
- Policy-based
 - REINFORCE
 - A2C/A3C
 - TRPO, PPO

Useful coding resources

- <u>RLZoo (Tensorflow)</u>
- <u>Stable-baselines3</u>
- OpenAl Spinning Up
- OpenAl Gymnasium

Thank you! Email request for slides to <u>hchen23@wm.edu</u>

WILLIAM

& Mary

DATA SCIEI

Haipeng Chen

Assistant professor, Data Science hchen23@wm.edu