
REINFORCEMENT LEARNING

Haipeng Chen
Assistant professor, Data Science
hchen23@wm.edu

@AI4EIC 2023

Reinforcement Learning in Humans

GIPHY

Humans appear to learn behaviors through “trial and error”

GIPHY

https://media.giphy.com/media/WZAJppaL7MfQs/giphy.gif
https://media.giphy.com/media/zy1XfWctWtbUI/giphy.gif

What is an example of Reinforcement Learning?

What is an example of Reinforcement Learning?

What is an example of Reinforcement Learning?

What is an example of Reinforcement Learning?

Reinforcement Learning from Human Feedback (RLHF)

What are other examples?

Games AI

https://youtu.be/8tq1C8spV_g

What are other examples?

Boston Dynamics Spot

https://bostondynamics.com/products/spot/

What are other examples?

Precision health

https://www.linkedin.com/pulse/5-ways-artificial-intelligence-may-affect-health-care-abhishek-goyal/

What are other examples?

Nuclear fusion plasma control

Degrave et al., Nature, 2022

https://deepmind.google/discover/blog/accelerating-fusion-science-through-learned-plasma-control/

Many Faces of Reinforcement Learning

Source: David Silver RL lecture

https://www.davidsilver.uk/teaching/

Branches of Machine Learning

Source: David Silver RL lecture

https://www.davidsilver.uk/teaching/

RL vs Supervised Learning?

RL vs Supervised Learning?

Bear

Dog

Cat

RL vs Supervised Learning?

Bear

Dog

Cat

Run away
(Take action)

Alive

“Policy”

RL vs Supervised Learning?

• Action/decision is involved

• Reward signal (vs class label)

• Non i.i.d data: agent's actions affect the subsequent data it receives

Outline

• What is reinforcement learning?

• The reinforcement learning problem

• Value-based

• Policy-based

The RL Problem
Environment

The RL Problem
Environment

Agent

The RL Problem
Environment

Agent

State
!"

The RL Problem
Environment

Agent

State
!"

Action
#"

The RL Problem
Environment

Agent

Reward
!"#$

State
%"

Action
&"

The RL Problem
• The agent:
• Observes state !"
• Takes action #"
• Receives reward $"

• The environment:
• Receives action #"
• Emits next state !"%&
• Emits reward $"%'

• Iteration: (→ (+ 1
Agent

Env

Reward
$"%&

State
!"

Action
#"

The RL Problem: MDP

Agent

A Markov Decision Process (MDP) is a tuple
< ",$,%,ℛ, ' >
• " is a finite set of states
• $ is a finite set of actions
• % is a state transition probability matrix
%))*+ = ℙ ./01 = 23 ./ = 2, 4/ = 5]

• ℛ is a reward function
ℛ)+ = 7 ℛ/01 ./ = 2, 4/ = 5]

• ' ∈ [0,1] is a discount factor

Definition (MDP)Env

Reward
</01

State
./

Action
4/

The RL Problem: Return

Return (total discounted reward)

!" = $"%& + ($"%) + ⋯
=+

,-.

/
(,$"%,%&

Agent

Env

Reward
$"%&

State
0"

Action
1"

The RL Problem: RL Agent

• An RL agent includes one or more of the

following:

• Policy: agent's behavior function

• Value function: how good is each

state and/or action

• Model: agent's representation of the
environment

Agent

Env

Reward
!"#$

State
%"

Action
&"

The RL Problem: RL Agent

• An RL agent includes one or more of the

following:

• Policy: agent's behavior function

• Value function: how good is each

state and/or action

• Model: agent's representation of the
environment

Agent

Env

Reward
!"#$

State
%"

Action
&"

Policy

• A policy ! is a distribution over actions given states,

! " # = ℙ &' = " (' = #]

Value Function

• The action-value function !"($, &) of an MDP is the expected return
starting from state $, taking action &, and then following policy (

!" $, & = *" +, -, = $, .,= &]

RL Taxonomy

Source: David Silver RL lecture

https://www.davidsilver.uk/teaching/

This Tutorial

Source: David Silver RL lecture

https://www.davidsilver.uk/teaching/

Value-based:

Find optimal !∗ #, % as proxy
of policy:

&∗ ', (= max
-

&-(', ()

Policy-based:

Directly find optimal 0∗ % # :

1∗ (' = argmax
-

4- '

This Tutorial

Outline

• What is reinforcement learning?

• The reinforcement learning problem

• Value-based

• Policy-based

Q-Learning: Training Procedure
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &)
• Take the action and observe next state and reward

• Update "($, &) for the current state-action pair

• Move to the next state

RewardState Action

Q-Learning: Training Procedure
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &)
• Take the action and observe next state and reward

• Update "($, &) for the current state-action pair

• Move to the next state

RewardState Action

Q-Learning: Policy

• Policy ! is derived from actioin value function " #, % , e.g., &-greedy
for exploration

'(= *argmax01 " 2(, %1 , with prob. 1 − &
any %, with prob. &

Q-Learning: Training Procedure
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &)
• Take the action and observe next state and reward

• Update "($, &) for the current state-action pair

• Move to the next state

RewardState Action

Q-Learning: Bellman Optimality Equation

! ", $ ← ! ", $ + ' (+) max-.! "′, 0′ − ! ", $

Q-Learning: Bellman Optimality Equation

! ", $ ← ! ", $ + ' (+) max-.! "′, 0′ − ! ", $

Target

Q-Learning: Bellman Optimality Equation

! ", $ ← ! ", $ + ' (+) max-.! "′, 0′ − ! ", $

Target Predicted

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.
• Backgammon: 10#$ states
• Computer Go: 10%&$ states
• Helicopter: continuous state space

• Tabular Q-Learning for large MDPs:
• Memory: too many states and/or actions to store
• Computation: too slow to learn the value of each state individually

Value Function Approximation

• Solution for large MDPs:
• Estimate value function with function approximation

• e.g., deep neural networks
!" #, %,& ≈ "(#, %

Types of Value Function Approximation

Action-in Action-out

Recall: Training of Tabular Q-Learning
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &)
• Take the action and observe next state and reward

• Update "($, &) for the current state-action pair

• Move to the next state

RewardState Action

Training Procedure of DQN
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &,')
• Take the action and observe next state and reward

• Update "($, &,') for the current state-action pair

• Move to the next state

RewardState Action

DQN vs Tabular Q-Learning
1. Q-function approximation w DNNs

• Optimize MSE between prediction and target using SGD

ℒ" #" = %&,(,),&*∼, - + / max
(3

4 53, 63; #" − 4 5, 6; #"
9

2. Experience replay

• Store transition (5, 6, -, 5′) in replay memory ,
• Repeatedly sample random mini-batch of transitions from ,

3. Fixed Q-targets

• Compute Q-learning targets w.r.t. old, fixed parameters =>

DQN for Atari Games

Mnih et al., Human-level control through deep reinforcement learning, Nature, 2015

DQN Results in Atari Games

Variants of DQN

• Success in Atari has led to huge excitement in DQN

• Some immediate and most successful improvements

• Double DQN (Van Hasselt et al, AAAI 2016)

• Prioritized Experience Replay (Schaul et al, ICLR 2016)

• Dueling DQN (Wang et al, ICML 2016)

• Raibow (Hessel, Matteo, et al. AAAI 2018)

Rainbow

Hessel, Matteo, et al. 2018

DDQN + PER + Dueling DQN
+ Other improvements:
• n-step learning
• Distributional RL
• Noisy Nets

Example
DQN Code

[Source: RLZoo – DQN and variants]

https://rlzoo.readthedocs.io/en/latest/algorithms/dqn.html

DQNs Summary
• Q-learning is a value-based method

• selects action based on policy derived from Q-function

• updates/learns Q with Bellman equation

• DQN improves Q-learning with DNNs for function approximation,

experience replay, and fixed Q-targets

• DQN is further improved with ideas such as Double DQN, PER,

Dueling DQN

Outline

• What is reinforcement learning?

• The reinforcement learning problem

• Value-based

• Policy-based

Value-based:

Find optimal !∗ #, % as proxy
of policy:

&∗ ', (= max
-

&-(', ()

Policy-based:

Directly find optimal 0∗ % # :

1∗ (' = argmax
-

4- '

This Tutorial

Downsides of Q-Learning vs PG

• Cannot handle high-dimensional or continuous action spaces

• Cannot learn stochastic policies

• E.g., rock-paper-scissor

• Not directly optimizing the objective, but MSE

RL as Policy Optimization

• Policy based reinforcement learning is an optimization problem
• Find !" that maximizes # $ ≡ &'() = +'(&()) :

!"∗ /) = argmax
'

$

Recall: Training of Tabular Q-Learning
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action based on policy ! derived from "($, &)
• Take the action and observe next state and reward

• Update "($, &) for the current state-action pair

• Move to the next state

RewardState Action

Training of Policy Gradient Method
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action directly based on policy !"
• Take the action and observe next state and reward

• Update the policy !" in the direction that increases expected
cumulative reward

• Move to the next state

RewardState Action

Training of Policy Gradient Method
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action directly based on policy !"
• Take the action and observe next state and reward

• Update the policy !" in the direction that increases expected
cumulative reward

• Move to the next state

RewardState Action

Training of Policy Gradient Method
• For each training episode:

• Start in the initial state:

• Loop until a terminal state is reached:

• Choose an action directly based on policy !
• Take the action and observe next state and reward

• Update the policy ! in the direction that increases expected
cumulative reward

• Move to the next state

RewardState Action

For any differentiable policy !" #, % , the policy gradient is

∇"' (= *+, ∇"log !" #, % 0+,(#, %)

Policy Gradient Theorem (roughly)

Practical Policy Gradient Algorithms

The policy gradient has many forms – based on how !"#(%, ') is estimated

∇*+ , = ."# ∇*log 2* %, ' !"#(%, ') Explicit PG

= ."# ∇*log 2* %, ' !3(%, ') Q Actor-Critic

= ."# ∇*log 2* %, ' 43(%, ') Advantage Actor-Critic (A2C)

43 %, ' = !3 %, ' − 63(%)

= ."# ∇*log 2* %, ' 78 REINFORCE

Downsides of PG Methods

• Hard to choose step sizes
• Input data is nonstationary due to changing policy
• Bad step is more damaging than in supervised learning

• Sample efficiency
• Only one gradient step per environment sample

Trust Region Policy Optimization (TRPO)
• Policy optimization as a constrained optimization

max$ %&'
($)' *'
($+,-)' *'

./'

s.t. %&' 01 ($+,- ⋅ *' , ($ ⋅ *' ≤ 5

• Alternatively, constraint as a penalty

max$ %&'
($)' *'
($+,-)' *'

./' − 7%&' 01 ($+,- ⋅ *' , ($ ⋅ *'

Schulman et al., 2015

Proximal Policy Optimization (PPO)
• PPO forms a lower bound objective by clipped importance scores:

• Let !" # = %& '" ("
%&)*+ '" ("

,-./0 # = 12" min !" # 67", clip !" # , 1 − >, 1 + > 67"

Schulman et al. 2017

PPO on Roboschool

Source: https://openai.com/research/openai-baselines-ppo

Example
PPO code

Source: RLZoo - PPO

https://rlzoo.readthedocs.io/en/latest/algorithms/ppo.html

Practical Tips of Implementing PPO

Source: The 37 Implementation Details of Proximal Policy Optimization

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Policy Gradient Summary

• Policy gradient methods get actions directly from learned policies
• Updates policy based on policy gradient (REINFORCE)

• A2C/A3C improves vanilla PG by the advantage function

• TRPO/PPO improves vanilla PG by constraining/penalizing large policy
updates

Reinforcement Learning Summary
• The reinforcement learning problem
• MDP
• Elements of RL agent: policy, value, model

• Value-based
• Q-Learning
• DQN, DDQN, PER, Dueling DQN, Rainbow

• Policy-based
• REINFORCE
• A2C/A3C
• TRPO, PPO

Useful coding resources

• RLZoo (Tensorflow)

• Stable-baselines3

• OpenAI Spinning Up

• OpenAI Gymnasium

https://rlzoo.readthedocs.io/en/latest/index.html
https://stable-baselines3.readthedocs.io/en/master/
https://spinningup.openai.com/en/latest/
https://github.com/Farama-Foundation/Gymnasium

Haipeng Chen
Assistant professor, Data Science
hchen23@wm.edu

Thank you!
Email request for slides to hchen23@wm.edu

mailto:hchen23@wm.edu

