From strong protons to weak neutrinos

Anna Staśto Penn State University

1

... to New World...

... to New World...

... to New World...

RBRC research

Spin Physics

Quantum Chromodynamics

Physics of QGP

RBRC research

Proton structure

What is the structure of the proton ?

First observation of proton structure: SLAC experiment (1969)

VOLUME 23, NUMBER 16

PHYSICAL REVIEW LETTERS

20 October 1969

OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING

M. Breidenbach, J. I. Friedman, and H. W. Kendall Department of Physics and Laboratory for Nuclear Science,* Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, L. W. Mo, and R. E. Taylor Stanford Linear Accelerator Center,[†] Stanford, California 94305 (Received 22 August 1969)

e(k)	$\frac{e(k')}{\xi}$
$\gamma(q)$	22
$Q^2 = -q^2$: resolving ower of interaction	

Proton structure

What is the structure of the proton ?

First observation of proton structure: SLAC experiment (1969)

VOLUME 23, NUMBER 16

PHYSICAL REVIEW LETTERS

20 October 1969

OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING

M. Breidenbach, J. I. Friedman, and H. W. Kendall Department of Physics and Laboratory for Nuclear Science,* Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, L. W. Mo, and R. E. Taylor Stanford Linear Accelerator Center,[†] Stanford, California 94305 (Received 22 August 1969)

Revealing proton structure

Exploring proton structure at high energy

DESY - Hamburg HERA Collider 1992-2007

The only electron(positron)-proton collider ever built ...so far...looking forward to EIC !

Center of mass energy: $E_{\rm cm} = 320 \; {\rm GeV}$

equivalent to 50 TeV electron beam on a fixed proton target...about 2500 times more than at SLAC

low energy

Cross section and parton density increases:

- with decreasing *x*
- with increasing scale *Q*

(small $x \leftrightarrow$ high energy s)

High energy: more gluons and sea quarks

More and more gluon radiation at high energy More 'sea ' quarks resolved

Ocean beach at Smith Point

Proton structure from low to high energy...

Proton has very rich structure: At high collision energies structure dominated by **gluons** with very low fractional momenta x

very large density of gluons

H1 and ZEUS

Color Glass Condensate

Color Glass Condensate

My rough idea

about Color Glass Condensate

before coming to BNL...

'God the Father', stained glass by S.Wyspiański; Church of St. Francis of Assisi, Cracow

CGC predicts **increase** in size of gluon density with increasing energy

Dipole Size: 1.000 I cos(phi): 0.0 I Delta Y: 10.0 I max Y: 50.0

Predicts ventor strong 16 hange of size: 10² requires additional **non-perturbative** effects

Dipole Size: 0.110 | cos(phi): 0.0 | Delta Y: 5.0 | max Y: 30.0

Interaction size increase with energy

CGC predicts **increase** in size of gluon density with increasing energy

Angular (de)correlations: low vs high gluon density

The angular correlations are a measure of the gluon density: two hadrons

$$p + A \rightarrow h_1 + h_2 + X$$

low density \leftrightarrow large correlation

large density \leftrightarrow low correlation

Angular (de)correlations: low vs high density

Crude analogy: pool game

Low number of balls: easier to plan the trajectory, high correlation

Images by DALL-E AI

High number of balls: trajectory can be heavily modified since balls can rescatter many times

Impact on ultrahigh energy neutrino physics

proton

heavy:

 $m_p = 0.938 \,\mathrm{GeV/c^2}$

complex structure with strongly interacting quarks and gluons

neutrino

very light: $m_{\nu} < 0.8 \,\mathrm{eV/c^2}$ (KATRIN exp.) no structure (?) weakly interacting

Impact on ultrahigh energy neutrino physics

proton

heavy: $m_p = 0.938 \,\mathrm{GeV/c^2}$

complex structure with strongly interacting quarks and gluons

neutrinovery light: $m_{\nu} < 0.8 \, \mathrm{eV/c^2}$ (KATRINexp.)no structure (?)weakly interacting

Impact on ultrahigh energy neutrino physics

proton

heavy: $m_p = 0.938 \,\mathrm{GeV/c^2}$

complex structure with strongly interacting quarks and gluons

neutrinovery light: $m_{\nu} < 0.8 \, \mathrm{eV/c^2}$ (KATRINexp.)no structure (?)weakly interacting

On Earth 65 billion neutrinos passing through cm^2 each second, mostly from the Sun

From strong protons to weak neutrinos, RBRC 25th Anniversary Celebration, BNL, June 22, 2023

Proton structure and ultrahigh energy neutrinos

Ultrahigh energy neutrinos: $E_{\nu} > 1 \text{ TeV}$ **IceCube experiment on the South Pole**

Flux of neutrinos

Proton structure and ultrahigh energy neutrinos

Ultrahigh energy neutrinos: $E_{\nu} > 1 \text{ TeV}$ IceCube experiment on the South Pole

Proton structure at high energy essential for understanding :

- How high energy neutrinos are **produced** ?
- How high energy neutrinos interact?

Neutrino flux from charmed hadrons

Example

Atmospheric neutrinos at high energy: Cosmic ray proton collides with nucleus in air Produced mesons decay : energetic

neutrinos

D

 $\pi, K \qquad \begin{array}{l} {\rm decays \ from \ light \ mesons:} \\ {\rm lower \ energy \ flux} \end{array}$

decays from charmed mesons: higher energy flux

Production of high – energy neutrinos

Flux of high energy neutrinos in the atmosphere

Proton structure and neutrino interactions

Proton structure also impacts the neutrino interactions \rightarrow cross section

Dominant interactions of neutrinos with matter at high energy is with the nuclei

Proton structure and neutrino interactions

Proton structure also impacts the neutrino interactions \rightarrow cross section

Dominant interactions of neutrinos with matter at high energy is with the nuclei

RBRC research broad impacts on other fields and developments of future facilities

RBRC research broad impacts on other fields and developments of future facilities

Astroparticle physics/ Astrophysics

RBRC research broad impacts on other fields and developments of future facilities

RBRC research broad impacts on other fields and developments of future facilities

