Lattice QCD and Searches for Violations of Fundamental symmetries

Sergey Syritsyn Physics & Astronomy Department Stony Brook University

RBRC 25th Anniversary Celebration BNL Physics Department, Jun 22, 2023

Baryogenesis and Broken Symmetries

[A.Sakharov (1967)] :

Three necessary conditions:

Why does Universe have More Matter than Antimatter?

$$\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 6 \cdot 10^{-10}$$

(alternatively: leptogenesis + sphalerons)

neutrinoless beta-decays

proton decay, neutron oscillations

Baryon

number-changing

interactions

Violations of C- and CP-

symmetries

Sergey Syritsyn

(electric dipole moments of p, n, e⁻, nuclei, atoms)

Interactions out of equlibrium

t | s | 10^{13} 10^{3} 101111111 QCD phase EW phase transition transition Leptogenesis WIMP Big Bang Nucleosynthesis Gravitinos freeze-out Gravitational T_{\min} 10^{-10} 10^{-5} T [GeV]

Lattice QCD and Fundamental Symmetries

RBRC 25th Anniversary, Jun 22, 2023

Baryogenesis and Broken Symmetries

Why does Universe have More Matter than Antimatter?

Sergey Syritsyn

Lattice QCD and Fundamental Symmetries

RBRC 25th Anniversary, Jun 22, 2023

Primordial

Primordial

Does the Proton Decay?

Missing piece of Grand-Unified Theories Limit on nuclear matter stability

Soudan

Super Kamiokande

- Expected x10 improvement on lifetime limit from Hyper-K, DUNE
- Better sensitivity to $p \rightarrow \overline{\nu}K^+$ that affects supersymmetric GUT models

Proton Decays and Grand Unification

 $\langle \bar{\ell}(q)\Pi(p)|\mathcal{O}^{\chi'}|N(k)\rangle = \bar{v}_{\ell\alpha}^C(q) P_{\chi'} \left[W_0(-q^2) - \frac{i\not q}{m_N} W_1(-q^2) \right] u_N(k)$

Sergey Syritsyn

Protons Stable due to Topology?

Why NO proton decay seen ?

- more complicated GUT scenario ?
- other BNV mechanism ?
- small decay amplitude due to nucleon structure ?

"quark pudding" (vac estimate:

 $\langle \operatorname{vac} | \mathcal{O}^{3q} | N \rangle \sim \rho_q^{3/2} \sqrt{V_N} \sim \frac{1}{V_N} \approx 0.004 \, \mathrm{GeV}^3$ $\langle \Pi | \mathcal{O}^{3q} | N \rangle \sim \langle \operatorname{vac} | \mathcal{O}^{3q} | N \rangle / f_\pi \approx 0.03 \, \mathrm{GeV}^2$

However, if the proton is a "Chiral Bag" [A.Martin, G.Stavenga '12]

 proton decay ≡ quantum tunneling of skyrmion over topological barrier

decay rate sensitive to R_{Bag} , quark masses; may be suppressed ~ $O(10^{-4}) - O(10^{-12})$

Uncertainty can be addressed only by a realistic ab initio QCD calculation

Sergey Syritsyn

Hadron Correlators in Lattice QCD

Quarks and gluons on a Lattice

- 4D Euclidean space
- discretized action
- controllable extrapolations $a \rightarrow 0, m_{quark} \rightarrow physical$

Observables from correlators of proton=(ud)u, 3-quark decay operators, etc

 $\langle q_x \bar{q}_y \ldots \rangle = \int \mathcal{D} \left(Glue \right) \int \mathcal{D} \left(Quarks \right) e^{-S_{Glue} - \bar{q} \left(\not D + m \right) q} \left[q_x \bar{q}_y \ldots \right]$

Sergey Syritsyn

Proton Decay Amplitudes with Physical Quarks

NO SUPPRESSION at physical quark masses \implies Protons sensitive to BNV from GUT

Δ (N_{Baryon})=2 Violation : $n \leftrightarrow \overline{n}$ Oscillations

• $n \leftrightarrow \overline{n}$ oscillation in nuclei : suppressed by interaction $\Delta M \sim O(100 \,\mathrm{MeV})$

n↔**n** Oscillations: Experimental Status

 $\tau_{n\bar{n}} \gtrsim 10^8 \, s$ $\delta m \lesssim 6 \cdot 10^{-24} \, \mathrm{eV}$

• τ (⁵⁶*Fe*) ≥ 0.72·10³² yr

 $\implies \tau_{N\bar{N}} \gtrsim 1.4 \cdot 10^8 \text{ s} [\text{Soudan}]$

- $\tau(^{16}O) \ge 1.77 \cdot 10^{32} \text{ yr}$
 - $\implies \tau_{N\bar{N}} \gtrsim 3.3 \cdot 10^8 \text{ s}$ [Super-K]
- τ (²*H*) ≈ 0.54·10³² yr
 - $\implies \tau_{N\bar{N}} \gtrsim 1.96 \cdot 10^8 \text{ s}$ [SNO]

Nuclear decays from ($\Delta B=2$) transitions: suppressed by nuclear medium:

 $T_d = R\tau_{n\bar{n}}^2$ $R \sim 10^{23} \, \text{s}^{-1}$

nuclear model uncertainty ~ 10-15% for ¹⁶O [E.Friedman, A.Gal (2008)]

SoudanSuper KamiokandeSNOSensitivity is limited by atmospheric neutrinos

$\mathbf{n} \leftrightarrow \overline{\mathbf{n}}$ Amplitudes from Lattice QCD

Lattice calculations at the physical point

[E.Rinaldi, S.S., M.Wagman; PRL'19; PRD'19]

Control of systematic uncertainties

- Chiral-symmetric fermions with physical pion masses
- Variational analysis of ground/excited states

Lattice calculations at the physical point

[E.Rinaldi, S.S., M.Wagman; PRL'19; PRD'19]

	$\mathcal{O}^{\overline{MS}(2 { m GeV})}$	Bag "A"	$\frac{LQCD}{Bag "A"}$	Bag "B"	$\frac{\text{LQCD}}{\text{Bag "B"}}$
$\boxed{[(RRR)_{3}]}$	0	0	_	0	_
$\boxed{[(RRR)_{1}]}$	45.4(5.6)	8.190	$\left(\begin{array}{c} 5.5 \end{array}\right)$	6.660	6.8
$[R_1(LL)_0]$	44.0(4.1)	7.230	6.1	6.090	7.2
$[(RR)_{1}L_{0}]$	-66.6(7.7)	-9.540	7.0	-8.160	8.1
$[(RR)_2 L_1]^{(1)}$	-2.12(26)	1.260	-1.7	-0.666	3.2
$[(RR)_2 L_1]^{(2)}$	0.531(64)	-0.314	-1.7	0.167	3.2
$[(RR)_2 L_1]^{(3)}$	-1.06(13)	0.630	-1.7	-0.330	3.2
	$[10^{-5} \mathrm{GeV}^{-6}]$	$[10^{-5}\mathrm{GeV}^{-6}]$]	$[10^{-5}{\rm GeV}^{-6}]$	

(comparison to MIT Bag model calculations [S.Rao, R.Shrock, PLB116:238 (1982)])

x(5-10) larger N-Nbar oscillation than previously expected

 \implies Stronger constraints on BNV models;

 \implies Great motivation for new $n \leftrightarrow \overline{n}$ experiments

(Next steps:

- "crossed" 2-neutron annihilation amplitudes $\langle vac|O^{6q}|nn \rangle$
- Nuclear medium effects)

n↔n Oscillations: Experimental Outlook

Maximize Probability of oscillation ~ N_n ($T_{\rm free}$)²

- Shielded beam (similar to ILL): Expected sensitivity x10²-10³ ILL τ_{n-π} ≥10⁹-10¹⁰ s
 ◆ Spallation sources: x12 flux @ESS
 - Elliptic focussing mirror
 - Better magnetic shielding (B < 1 nT)

[Phillips et al, arXiv:1410.1100]

stored ultra-cold neutrons $\tau_{n-\overline{n}} \gtrsim 2.2 \cdot 10^8 \text{ s}$

- Further improvements
 - Larger vessels
 - Better magnetic shielding (B < 1 nT)</p>
 - Parabolic floor concentrators
 - Multiple coherent reflections

CP Violation & Neutron Electric Dipole Moment

$$\vec{d}_N = d_N \frac{\vec{S}}{S}$$

 $\mathcal{H} = -\vec{d}_N \cdot \vec{E}$

Magnetic dipole moment $\vec{\mu}_n = \mu_n \vec{S}$

Electric dipole moment $\vec{d_n} = d_n \vec{S}$

EDMs are the most sensitive probes of CPv:

- Signals for beyond SM physics
 - (SM = 10⁻⁵ of the current exp.bound)
- Prerequisite for Baryogenesis
- Strong CP problem : θ_{QCD}-induced EDM?

Experimental Outlook

Current nEDM limits:

|d_n| < 2.9 × 10⁻²⁶ e ⋅ cm (stored UC neutrons)
 [Baker et al, PRL97: 131801(2006)]
 |d_n| < 1.6 × 10⁻²⁶ e ⋅ cm (¹⁹⁹Hg)
 [Graner et al, PRL116:161601(2016)]

Future nEDM sensitivity :

- 1–2 years : next best limit?
- 3–4 years : x10 improvement
- 7-10 years : x100 improvement

	10 ⁻²⁸ e cm
CURRENT LIMIT	<300
Spallation Source @ORNL	< 5
Ultracold Neutrons @LANL	~30
PSI EDM	<50 (I), <5 (II)
ILL PNPI	<10
Munich FRMII	< 5
RCMP TRIUMF	<50 (I), <5 (II)
JPARC	< 5
Standard Model (CKM)	< 0.001

[Snowmass EDM workshop report, arXiv:2203.08103]

Electric Dipole Moments: Window to New Physics

Sergey Syritsyn

Lattice QCD and Fundamental Symmetries

Sergey Syritsyn

Lattice QCD and Fundamental Symmetries

Determination of Nucleon EDM

 Compute *Energy Shift* in uniform electric field [S.Aoki et al '89 ; E.Shintani et al '06; E.Shintani et al, PRD75, 034507(2007)]

$$\langle N(t)\bar{N}(0)\rangle_{\theta,\vec{E}} \sim e^{-(E\pm\vec{d}_N\cdot\vec{E})t}$$

• Compute *CPv Form-Factor* F_3 : $d_N = F_3(Q^2 \rightarrow 0) / (2m_N)$ [(everybody else, almost)]

 $\langle N_{p'} | \bar{q} \gamma^{\mu} q | N_p \rangle_{\mathcal{CP}} = \bar{u}_{p'} \Big[F_1 \gamma^{\mu} + (F_2 + i F_3 \gamma_5) \frac{i \sigma^{\mu\nu} (p' - p)_{\nu}}{2m_N} \Big] u_p$

- pre-2017 : spurious $\mu_n \leftrightarrow d_n$ mixing
- Dragos et al(2019)
- Alexandrou et al(2020)
- Bhattacharya et al (2021)
- Liang et al (2023)

 $d_n / \theta = -0.0015(7) \ e \cdot \text{fm}$ $d_n / \theta = -0.0009(24) \ e \cdot \text{fm}$

- $|d_n / \theta| \lesssim 0.01 \ e \cdot \mathrm{fm}$
- $d_n / \theta = -0.0015(1)(3) e \cdot \text{fm}$

Nucleon "Parity Mixing"

CPv interaction induces a chiral phase in nucleon spinor ; lattice calculations of EDM have to account for that [M.Abramczyk, S.Aoki, S.N.S, et al (2017) arXiv:1701.07792]

 $\langle \operatorname{vac}|N|p,\sigma \rangle_{\mathcal{CP}} = e^{i\alpha\gamma_5} u_{p,\sigma} = \tilde{u}_{p,\sigma}$

Value of α -mixing is critical for correct determination of EDM:

$$F_3^{\text{lat}}(Q^2) \approx \frac{m}{q_3} \underbrace{\langle N_{\uparrow}(0) | \bar{q}\gamma_4 q | N_{\uparrow}(-q_3) \rangle_{\mathcal{CP}}}_{\mathcal{CP}} - \underbrace{\alpha_5 G_E(Q^2)}_{\mathcal{CP}}$$

CPv matrix element

Sachs form factor subtraction

Pre-2017 lattice results for θ_{QCD} -*n*EDM: *original* and *corrected*

		$m_{\pi} [{ m MeV}]$	$m_N [{ m GeV}]$	$ ilde{F}_3$	F_3
[ETMC 2016]	n	373	1.216(4)	-0.555(74)	0.094(74)
[Shintani et al 2005]	n	530	1.334(8)	-0.325(68)	-0.048(68)
	p	530	1.334(8)	0.284(81)	0.087(81)
[Berruto et al 2006]	n	690	1.575(9)	-1.39(1.52)	-1.15(1.52)
	n	605	1.470(9)	0.60(2.98)	1.14(2.98)
	n	465	1.246(7)	-0.375(48)	-0.130(76)
	n	360	1.138(13)	-0.248(29)	0.020(58)

Nucleon "Parity Mixing"

CPv interaction induces a chiral phase in nucleon spinor ; lattice calculations of EDM have to account for that [M.Abramczyk, S.Aoki, S.N.S, et al (2017) arXiv:1701.07792]

 $\langle \operatorname{vac}|N|p,\sigma \rangle_{\mathcal{GP}} = e^{i\alpha\gamma_5} u_{p,\sigma} = \tilde{u}_{p,\sigma}$

Value of α-mixing is critical for correct determination of EDM:

$$F_3^{\text{lat}}(Q^2) \approx \frac{m}{q_3} \underbrace{\langle N_{\uparrow}(0) | \bar{q}\gamma_4 q | N_{\uparrow}(-q_3) \rangle_{\text{CP}}}_{\text{QP}} - \underbrace{\alpha_5 G_E(Q^2)}_{\text{QP}}$$

CPv matrix element

Sachs form factor subtraction

- Proton ($G_{Ep}(0)=1$) : Correction ~ α_5
- Neutron (G_{En}(0)=0) : No correction at Q²=0 However, Q²→0 extrapolation may be skewed by neutron electric form factor ~α₅ G_{En}(Q²)

Signal & Noise in θ_{QCD} -induced nEDM

Sergey Syritsyn

Lattice QCD and Fundamental Symmetries

RBRC 25th Anniversary, Jun 22, 2023

Alternative: Background Electric Field

Calculation of magnetic and electric moments, hadron polarizabilities [W.Detmold et al (2009)]

Electric field on a periodic lattice is "quantized"

$$\mathcal{E}_{\min} = \frac{1}{|q_d|} \frac{2\pi}{L_x L_t}$$
$$\approx 0.037 \,\text{GeV}^2 = 187 \,\text{MV/fm}$$

for a $(2.8 \text{ fm})^3 x (5.6 \text{ fm})$ lattice

Feynman-Hellman theorem : relate energy shift ...

$$m'_N = m_N - (d_N^{\theta} \theta) \, \vec{\Sigma} \cdot \vec{\mathcal{E}}$$

... to matrix element of local topological charge density

polarized in spin and charge

Advantages:

- sample GG only on one time slice
 moise reduction
- no need for $Q^2 \rightarrow 0$ momentum extrapolation

Topological Charge with Gradient Flow

Gradient flow: covariant *4D-diffusion* of quantum fields with "G.F." time t_{GF} :

Tree-level:

Gradient-flowed topological charge:

total top. charge on 20 randomly

$$\begin{bmatrix} \text{M.Luscher, JHEP08:071; 1006.4518]} \\ \frac{d}{dt_{\text{GF}}} B_{\mu}(t_{\text{GF}}) = D_{\mu}G_{\mu\nu}(t_{\text{GF}}), \quad B_{\mu}(0) = A_{\mu} \\ B_{\mu}(x, t_{\text{GF}}) \propto \int d^{4}y \exp\left[-\frac{(x-y)^{2}}{4t_{\text{GF}}}\right] A_{\mu}(y) \\ \tilde{Q}(t_{\text{GF}}) = \int d^{4}x \frac{g^{2}}{32\pi^{2}} \left[G_{\mu\nu}\tilde{G}_{\mu\nu}\right]\Big|_{t_{\text{GF}}} \end{aligned}$$

- continuous "cooling": effective scale $\Lambda_{\rm UV} \rightarrow (t_{\rm GF})^{-1/2}$
- smoothing fields (reduce |Gµν|)
 remove Gµν dislocations;
 dynamical separation of top. sectors
 [M.Luscher, JHEP08:071; 1006.4518]
- "diffusion" of topological charge density makes it nonlocal

Gradient-Flowed Topological Charge Density

$$24^3 \times 64$$
 lattice, $m\pi \approx 340 \ MeV$

$$q(x) = \frac{g^2}{32\pi^2} G^a_{\mu\nu} \widetilde{G}^a_{\mu\nu}$$
$$\approx \frac{1}{16\pi^2} \frac{1}{a^4} \operatorname{Tr} \left[G^{\text{lat}}_{\mu\nu} \widetilde{G}^{\text{lat}}_{\mu\nu} \right]$$
$$\propto (\mathbf{E} \cdot \mathbf{H})_{\text{color}}$$

Instantons and Anti-Instantons : Quantum tunneling of gluon field between topological sectors

 $\mathsf{CPv}\text{-}\mathsf{QCD}\ \boldsymbol{\varTheta}\text{-}\mathsf{Vacuum}:$

$$|vac\rangle_{\theta} = \sum_{Q} e^{i\theta Q} |Q\rangle$$

Sergey Syritsyn

Lattice QCD and Fundamental Symmetries

Tunneling Between Topology Sectors

$$q(x) = \frac{g^2}{32\pi^2} G^a_{\mu\nu} \widetilde{G}^a_{\mu\nu}$$
$$\approx \frac{1}{16\pi^2} \frac{1}{a^4} \operatorname{Tr} \left[G^{\text{lat}}_{\mu\nu} \widetilde{G}^{\text{lat}}_{\mu\nu} \right]$$
$$\propto (\mathbf{E} \cdot \mathbf{H})_{\text{color}}$$

Instantons and Anti-Instantons : Quantum tunneling of gluon field between topological sectors

CPv-QCD Θ -Vacuum :

$$|vac\rangle_{\theta} = \sum_{Q} e^{i\theta Q} |Q\rangle$$

Extrapolation to the Physical Point

Summary

- Nucleon structure calculations on a lattice are critical to searches for symmetry violations, understanding the origin of nuclear matter
 - Proton decays $p \rightarrow \pi/K$, $p \rightarrow leptons$

No topological suppression of nucleon decay found; confirm limits on GUTs NEXT: $p \rightarrow \rho \rightarrow \pi \pi$, $p \rightarrow K^* \rightarrow \pi K$ amplitudes

Neutron-antineutron oscillation Amplitudes × (6 ... 8) larger than from pheno.models NEXT: $nn \rightarrow vacuum$ amplitudes, $n \rightarrow \overline{n}$ in nuclear medium

Novel method to compute nEDM from local topological charge Cross-check for electric-dipole form factor calculation Results consistent with earlier works Potential method of choice for physical-point calculations with large V₄ BACKUP

BACKUP

Proton Decay : Extrap. in Q² and Lattice Spacing

Searches for N \Leftrightarrow \overline{N} in Nuclei

Nucleus decay from (nn) annihilation

 $T_d = R\tau_{n\bar{n}}^2 \qquad r$

 $R \sim 10^{23} \, s^{-1}$

Nuclear medium effect suppresses

neutron/antineutron oscillation

nuclear model uncertainty ~ 10-15% for ¹⁶O [E.Friedman, A.Gal (2008)]

Sensitivity is limited by atmospheric neutrinos

Soudan

Super Kamiokande

Sergey Syritsyn

 $\Delta M \sim 100 \text{ MeV}$

RBRC 25th Anniversary, Jun 22, 2023

Matrix Elements of GG (Low-mode Improved)

Two effects observed: 1. Convergence to ground state matrix el. 2. Diffusion of top.charge for $t_{sep} \leq 7a$

PRELIMINARY estimates $2md_n = F_3(0) \approx 0.11 \dots 0.13$ **agree with form factor**

Analysis of (τ_Q, t_{GF}) required to detangle $\langle N | G \widetilde{G} | N \rangle$, $\langle N | G \widetilde{G} | N \rangle_{exc}$, $\langle vac | G \widetilde{G} | N \overline{N} \rangle$,

. . .