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l Lattice guy
l started lattice QCD computation from master coarse @ Tsukuba (1991)

l supervisor  Y. Iwasaki / K. Kanaya
l using (prototype of) QCDPAX
l interface tension of QCD (quench: 1st order transition)

l doctor @ Tsukuba
l supervisor A. Ukawa
l using CP-PACS
l electroweak phase transition

l ever since then I did not quit lattice

l Now
l Leader of Field Theory Research Team at RIKEN Center for Computational Science

who am I ?

Supercomputer Fugaku
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l 1on1 (meeting)
l PI meets one member

l to hear / understand (personal) problems / issues
l to guide member for directions
l to try think together to help member to find solutions

l must not discuss research (tasks)
l good to starts with a simple question

l and continue, expand, 

l my team: 1 research scientist, 2 concurrent technical scientists, 3 postdocs, 1 JRA
l once/moth for all young researchers for 30 min

l Q to each member last time:
l what do you think is most important element(s)/skill(s) one should have for a successful 

scientist  ?

l A from one young researcher
l human relation!

this answer is totally unexpected one to me…, and realized I might have been very lucky…

episode 1on1



my relation with RBRC

l Apr. 1997  〜 Mar. 2000 Assistant @ Tsukuba CCS
l May  2000 〜 July 2003 RBRC research associate
l Aug. 2003 〜 Aug. 2006 Wuppertal
l Sep. 2006 〜 Nov. 2010 RBRC fellow
l Dec. 2010 〜 Apr.  2016 Kobayashi-Maskawa Institute, Nagoya
l May. 2016 〜 Jan. 2019 KEK
l Oct.  2016 〜 July 2018 RBRC fellow (cross appointment)
l Oct.  2018 〜 R-CCS (Kobe, Japan)



l Apr. 1997  〜 Mar. 2000 Assistant @ Tsukuba CCS
l May  2000 〜 July 2003 RBRC research associate
l Aug. 2003 〜 Aug. 2006 Wuppertal
l Sep. 2006 〜 Nov. 2010 RBRC fellow
l Dec. 2010 〜 Apr.  2016 Kobayashi-Maskawa Institute, Nagoya
l May. 2016 〜 Jan. 2019 KEK
l Oct.  2016 〜 July 2018 RBRC fellow (cross appointment)
l Oct.  2018 〜 R-CCS (Kobe, Japan)

my relation with RBRC

All together: 100 months = 8 years and 4 months

(assuming cross appointment : ~ 50% RBRC)



RBRC event – Thursday lunch talk – people can order Japanese bento box
director TD Lee always shows up, questions, encourages all

I got really nervous at the 1st experience, but, getting used to it

owing TD and everyoneʼs warm personality

my relation with RBRC

l Apr. 1997  〜 Mar. 2000 Assistant @ Tsukuba CCS
l May  2000 〜 July 2003 RBRC research associate

May 2000:
RBRC RA  Kazu Itakura and myself joined
: Daniel Boer, Mat Wingate, Juergen Schaffner Bielich,
Yasui, Shoichi Sasaki, Yasushi Nara, 



celebration party hosted by TD

l Yasushi Naraʼs and Aokiʼs marriages celebrated at the same time in RBRC



l Domain wall fermion (quench)
l encouraged by the success of Blum-Soni
l at CP-PACS collaboration ~1998~

l S. Aoki, T. Izubuchi, Y. Tanigchi, Y. Aoki, 
l Goodness of chiral symmetry depend on gauge action
- Iwasaki action better than Wilson

l Kaon bag parameter BK
l + J. Noaki : εʼ/ε

l RBC (RIKEN-BNL-Columbia)
l with K. Orginos (joined in autumn 2000~)
l Gauge action dependence more in depth
- DBW2 action better than Iwasaki

l QCDSP : cps++, debugging qcdsp (finding faulty node is not easy..)
l senior members: T. Blum, N.Christ, R.Mawhinny, S.Ohta, A. Soni

l RBC
l proton decay ME project started w/ discussion with Soni
- this later become my baby project which is being continued by now

- got very useful knowledge and skills throughout 1st round of this project
- I brought up the project and I was brought up by this project

- essential – new NPR scheme built mostly by discussion with Chris Dawson 

my research around year 2000
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for each % and then extrapolated to the continuum by a con-
stant fit. All errors in the figure are estimated by a single
elimination jackknife procedure, except for fit errors for the
continuum extrapolation. As seen in the figure, scaling vio-
lation is mild up to mPS

2 &0.8 GeV2, and the continuum ex-
trapolation is reliable there. This confirms that the small scal-
ing violation of the physical BK observed in Sec. VI C is not
an accidental one at mPS!mK but it holds over a wide range
of the pseudo scalar meson mass.
In Table XII, values of BK in the continuum limit, which

are also fitted by the same form "6.6#, are given for 0.02
&mPS

2 &1.0 (GeV2) with errors. Fitted parameters B , bPS

and cPS are also given in the table, together with the repro-
duced values. From this result in the continuum limit one can
see that the contribution from higher order terms of chiral
perturbation theory (bPS and cPS) is non-negligible and be-
comes as large as 40% of the leading order contribution (B)
at mPS!mK . We also comment that our value cPS of the
coefficient of the chiral logarithm is 3–4 times smaller than
the value predicted by chiral perturbation theory,
1/(4' f')2!0.73 (GeV"2). The smallness of this coeffi-
cient is also observed in the result of BK with the KS fermion
!6$ and may be caused by higher order corrections in chiral
perturbation theory, which may not be negligible for values

FIG. 13. Scaling behavior of renormalized BK((!2 GeV).
Previous results with the KS action !6$ are also shown with open
symbols.

FIG. 14. Renormalized BK((!2 GeV) as a function of mPS
2 ,

at %!2.6, 2.9 and ) "continuum limit#, where errors are shown
only in the continuum limit. Open symbols represent data obtained
in our simulations, while the solid circle gives the value of BK at the
physical point in the continuum limit, with the statistical error
"solid# and the total error "dotted#.

TABLE XII. Parameters for the fit of BK in the continuum limit by Eq. "6.6#, and BK as a function of mPS
2

in the continuum limit, together with the reconstruction from the fit.

Parameters BK Error BK

B 0.41180
bPS 0.71110
cPS 0.20731

mPS
2 "GeV2) Continuum extrapolation Reconstruction by the fit

0.020 0.4318 0.0100 0.4377
0.100 0.4994 0.0058 0.5001
0.200 0.5544 0.0044 0.5528
0.300 0.5937 0.0043 0.5922
0.400 0.6239 0.0041 0.6228
0.500 0.6471 0.0038 0.6470
0.600 0.6643 0.0038 0.6660
0.700 0.6780 0.0043 0.6807
0.800 0.6907 0.0051 0.6918
0.900 0.7016 0.0060 0.6996
1.000 0.7097 0.0075 0.7046
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an order of magnitude smaller than that of the Wilson action.
Finally, the residual mass of the Symanzik action is roughly
a factor of 3 smaller than that of the Wilson action. In this
figure the solid lines represent fits to simple exponentials in
all cases except the Wilson action where a fit to two expo-
nentials is shown. For the Symanzik data a small deviation
from the simple exponential fit is observed at Ls!16 while
the Wilson action shows a very clear deviation. On the con-
trary, both the Iwasaki and DBW2 data can be fit well with a
simple exponential for the same range of Ls . For that reason
it is interesting to quote a value for the parameter q that

Shamir has computed perturbatively !13". His one loop result
is that the light fermion wave function #(s) decays exponen-
tially away from the wall, i.e, #(s)$qs with q! 1

2 . The re-
sidual mass also behaves as m res$qLs. In the case of the
Wilson and possibly the Symanzik action, the fact that no
good fit to a single exponential is obtained may be a signal
that m res scales as a power law, !54" and q$1. Such behav-
ior is consistent with the spectral flows observed for the Wil-
son gauge action. For the Iwasaki and DBW2 actions q
%0.7 and q%0.6, respectively, which is consistent with a
gap in the spectral flow at M 5!1.7–1.8 that is well defined

FIG. 7. The ratio defined in Eq. &11' at a"1%2 GeV. The fancy
squares correspond to the Wilson gauge action, the diamonds to
Symanzik, the squares to Iwasaki, and the octagons to DBW2. The
bare quark mass in all cases is 0.020 and Ls!16.

FIG. 8. The residual mass at a"1%2 GeV as a function of the
bare quark mass. The octagons correspond to DBW2, the squares to
Iwasaki, and the diamonds to Symanzik. In each case Ls!16.

FIG. 9. Dependence of the residual mass on the size of the fifth
dimension at a"1%2 GeV. The octagons correspond to DBW2, the
squares &CP–PACS !6"' and diamond &RBC !5"' to Iwasaki, the
bursts to Symanzik, and the fancy squares to Wilson. All but the
Wilson action fit a simple exponential decay reasonably well. Note
the Iwasaki results use different gauge field ensembles at each value
of Ls . In the case of the Wilson action, the results are fit to a double
exponential function.

TABLE II. The residual mass m res at a"1%2 GeV for the ac-
tions tested. In the construction of this table, for the Symanzik
action we used 51 configurations, for the Iwasaki 45, and for the
DBW2 89.

mf Ls Symanzik Iwasaki DBW2

0.020 8 3.04(5)#10"3 7.54(5)#10"4

0.020 12 8.2(4)#10"4 9.92(20)#10"5

0.020 16 3.3(3)#10"4 1.4(4)#10"4 1.60(5)#10"5

0.040 8 2.90(4)#10"3 7.49(5)#10"4

0.040 12 7.4(3)#10"4 9.9(4)#10"5

0.040 16 2.73(24)#10"4 1.2(4)#10"4 1.56(3)#10"5

0.060 8 2.82(3)#10"3 7.50(8)#10"4

0.060 12 6.95(23)#10"4 1.00(6)#10"4

0.060 16 2.44(18)#10"4 1.15(27)#10"4 1.565(23)#10"5
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DBW2
Iwasaki

Human relation !
I met right persons in right timings.  They are all passionate and cool on what they are facing.



l Non perturbative renormalization (NPR) of 3 quark operators

l classification resembles weak 4 fermi operators for Kaon decay

l RI/MOM scheme : chiral-violating operator mixing suppressed
l RI → MSbar matching → usable in phenomenology

proton decay matrix elements

because the lattice discretization error grows as the mo-
mentum becomes larger. This is the well-known window
problem: is it possible to have a region of momentum such
that !QCD ! jpj! !=a? We will give an estimate of the
systematic error due to the window problem later.

The anomalous dimension of the nucleon-decay opera-
tor has been calculated up to two loops [53] using NDR in
QCD. We use this result both in the scheme-matching
calculation and to factorize the proper scale dependence
of the NPR-MOM renormalization factor. In general,
scheme dependence appears at the next-to-leading order
(NLO), and so the one-loop matching factor which relates
the MOM scheme to the MS, NDR scheme is needed for
the complete NLO treatment of the operator renormaliza-
tion. The result for this will be presented in Appendix C.

A. Operator mixing

Given the good chiral symmetry of DWF, the mixing of
the operators with different chirality is expected to be
suppressed. However, it is instructive to first enumerate
the allowed mixings if chiral symmetry is not assumed.
Since this discussion uses only the rotational, parity, and
vector flavor symmetry of lattice QCD, it also gives the
operator mixing structure for Wilson fermions.

It is convenient to introduce the operator basis which
mimics those commonly used for the four-Fermi operators
in the weak effective Hamiltonian. All the operators can be
written in the form

 O ""0
uds " "ijk#uiTC"dj$"0sk; (28)

which should be the Lorentz spinor; thus all suffixes other
than the single spin index must be contracted. Here, again
u, d, and s are not necessarily labeling the real flavors.
With a notation, S " 1, P " #5, V " #$, A " #$#5, T "
%$& " 1

2 f#$;#&g, ~T " #5%$&, we have ""0 " SS, PP,
VV, AA, TT for the negative parity (P%) operators, and
SP, PS, VA, AV, T ~T for the positive parity (P&) operators
[54]. There is another global symmetry which is useful in
classifying these operators: switching (S) u and d is a
symmetry of the Lagrangian if they are degenerate in
mass. Under a switching transformation, an operator
comes back to itself with possible change of sign depend-
ing on " that connects the spin indices of u and d.
Recalling #C"$T " %C" for " " S, P, A (S%) and
#C"$T " &C" for " " V, T (S&), we have four different
operator groups as shown in Table II. Operators in different
blocks do not mix with each other.

These operators have the following properties:
(1) There is a trivial relation between operators with

different parity in the same column in Table II:
O#P&$ " #5O#P%$. This means that there is a
one to one mapping between the parity negative
and parity positive operators such that the renormal-
ization matrices are identical.

(2) The five operators in O#P%$ form a complete set of
operators made of u, d, and s with any ordering.
This follows from the fact that any such operator can
be rewritten, by Fierz transformation, as a linear
combination of the operators O""0

uds.
(3) As our target operator is ""0 " PR=LPL [Eqs. (5)

and (7)], we may neglect the S& sector from pos-
sible mixing candidates. Then, for each parity (chi-
rality), we need to consider only three operators for
mixing.

(4) Operators of the type udu are renormalized in the
same way as uds. A simple way to see this is to note
that the calculation of these renormalization factors
using the Rome-Southampton NPR method is iden-
tical. This will be shown below.

From now on, we can concentrate on the S% sector. Our
renormalization convention is

 O a
ren " ZabNDO

b
latt; (29)

where a and b stand for possible ""0 " SS, PP, AA for
P%. ZabND is a 3' 3 renormalization matrix. As mentioned
above, an identical matrix applies for P& operators, SP,
PS, and AV. The chirality basis, which is more convenient
to match the lattice operators with those used in the prin-
cipal matrix elements, is made of the following three
operators,

 LL " 1
4#SS& PP$ % 1

4#SP& PS$; (30)

 RL " 1
4#SS% PP$ % 1

4#SP% PS$; (31)

 A#LV$ " 1
2AA% 1

2#%AV$: (32)

The renormalization matrix transforms under this basis
change as

 Zchiral
ND " TZparity

ND T%1; (33)

 T "
1=4 1=4 0
1=4 %1=4 0
0 0 1=2

0
@

1
A; (34)

where Zchiral
ND is for the basis operators LL, RL, A#LV$,

while Zparity
ND is for SS, PP, AA. If there is no explicit chiral

symmetry breaking by the action used, Zchiral
ND is a diagonal

matrix.
Taking the above into consideration, we may contrast

the situation when using Wilson and domain-wall fermi-
ons: In the Wilson fermion case, the lattice operator, for

TABLE II. Classification of the nucleon-decay three-quark
operator O""0

uds by parity (P ) and switching (S) (u$ d).

S% S&

P% SS PP AA VV TT
P& SP PS %AV %VA T ~T
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above, an identical matrix applies for P& operators, SP,
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 UMS!!;p" #
!
"s!!"
"s!p"

"
#0=2$0

!
1$

#
#1

2$0
% $1#0

2$2
0

$

& "s!!" % "s!p"
4%

"
; (47)

 $0 # 11% 2

3
Nf; $1 # 102% 22

3
Nf: (48)

The matching factor is calculated to one loop in contin-
uum perturbation theory. The MOM-scheme calculation
should be performed with the same kinematics and in the
same gauge as that used on the lattice. Setting the momenta
for the three external quark fields to be equal, and setting
the mass to zero, the matching factor is obtained as

 

ZMS

ZMOM
# 1$ "s

4%

!
433

180
% 1123

90
ln2$ &

#
587

180
% 317

90
ln2

$"
;

(49)

where & is the gauge parameter and & # 0 (Landau gauge)
will be used. See Appendix C for the derivation. To match
the NPR-MOM scheme to the MS scheme with this for-
mula, we need to take the chiral limit of the massive
simulation data. As we will see, this can be done very
precisely, as this mass dependence is extremely mild in
the NPR data.

We use the two-loop running coupling "s!!" with !MS
obtained by Alpha Collaboration for quenched QCD [56],
!!0"

MS
r0 # 0:602!48", where r0 is the Sommer parameter

defined with the static quark potential V!r" as r2 dV
dr # 1:65

[57]. The approximate value is r0 # 0:5 fm from the po-
tential models. As we set the scale by using the ' meson,
we use our measurements of r0=a and m'a and combine
with the experiment m' # 0:77 GeV to get the appropriate
!!0"

MS
.

D. Results of the NPR

We present here the results of the NPR of nucleon-decay
operators for quenched calculation, on configurations gen-
erated with the DBW2 gauge action at a # 0:15 fm (see
Table I). The NPR study employs four quark masses mf #
0:025, 0.04, 0.055, 0.07, where the largest roughly corre-
sponds to the strange quark mass.

Figure 1 shows the SS and PP projections of the SS
operator, MSS;SS and MSS;PP as a function of lattice mo-
mentum squared for all quark masses. Note that mass
dependence is negligible.

Taking the chiral limit (mf ! %mres) using a linear
extrapolation and rearranging to the chirality basis, one
obtains Fig. 2 for all the elements of M.

Most of the off-diagonal elements are less than 0.5% of
the diagonal and consistent with zero for !pa"2 > 1:2
within 2(, while a few others still remain within 1% of
the diagonal elements, and are thus negligible for our

extraction [58]. As a result, the nucleon-decay operator
OR=LL # )ijk!uiTCPR=Ldj"PLsk is renormalized multipli-
catively for our domain-wall fermion simulation.

The next step is to obtain the total renormalization factor
to relate the lattice operator to the MS, NDR operator, for
which we need the value of Zq. As mentioned previously,
we extract this value by calculating ZA=Zq using the
Rome-Southampton technique, and ZA from hadronic cor-
relators. For the former, we use the average of the vertex
function of the local axial vector and vector current opera-
tors. The renormalization constants for these operators are
equal in a theory in which chiral symmetry is only softly
broken. This equality should also hold for the vertex func-
tions at high energies. At low energies they can differ due
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FIG. 1 (color online). SS and PP projections of the SS opera-
tor, MSS;SS and MSS;PP, as a function of lattice momentum
squared for each quark mass.
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FIG. 2 (color online). Mixing matrix Ma;b in the chirality basis
at the chiral limit mf ! %mres.
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Skills:   NPR, PR
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Travel to USA from Germany (2004)
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l Aug. 2003 〜 Aug. 2006 Wuppertal
l Sep. 2006 〜 Nov. 2010 RBRC fellow

September 2006 back to Long Island from Germany
Thursday lunch talk continues w/ presence of N. Samios / L. McLerran

(YA management)
LQCD: RBC → RBC/UKQCD collaboration for 2+1 flavor DWF studies
joint call (phone) once a week for each project
I joined calls (discussion over phone was actually challenging to me)

l general 2+1 flavor DWF applications (mass, bag parameter etc)
l UK: C.Sachrajda, P.Boyle, ,

l non-perturbative renormalization
l Later I was coordinating the call and discussion
l SMOM scheme ← realization as a scheme of Normanʼs idea of non-exceptional momentum
- C. Sturm (PQCD guy!)

l SMOM BK scheme:  P. Boyle, et al

I was also involved in the projects
l neutral B meson mixing : RBC: T. Ishikawa, R. van de Water, O. Witzel, C. Lehner
l proton decay LEC with UK: P. Cooney, L. Del Debbio, R. Kenway, C. Maynard, R. Tweedie
l nucleon form factor with T. Yamazaki,  structure functions S. Sasaki

my relation with RBRC
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l Domain wall fermion 2+1 flavor in RBC/UKQCD
l conventional MOM scheme: exceptional momentum
l → non-exceptional → NP contamination reduced →

my research around year 2006

!
RI=SMOM!"

V ¼ 1
48 Tr½"V"

# !"$ and

!
RI=SMOM!"

A ¼ 1
48 Tr½"A"

# !5!"$: (79)

Although these projectors are superficially the same as
those used in the RI/MOM scheme, it should be remem-
bered that the kinematics is different in the two cases with
no exceptional channels in the Green functions used to
define the RI=SMOM!"

scheme.

The product of mass and wave function renormalization
factors is calculated from the average of scalar and pseu-
doscalar vertex functions,

ZmZq ¼ 1
2ð!S þ !PÞ; (80)

with

!S ¼ 1
12 Tr½"S # 1$ and !P ¼ 1

12 Tr½"P # !5$; (81)

again defined with the SMOM kinematics for the vertex
functions. While !S ¼ !P holds to all orders in perturba-
tion theory with naive dimensional regularization, by using
Weinberg’s power-counting scheme we see that they can in
general differ by terms of Oð1=p6Þ [14]. The difference
!P ( !S after the chiral extrapolation is plotted in Fig. 48
as a function of p2 (in physical units) for both the 243 and
323 lattices. The figure confirms the expected approximate
1=p6 scaling. The unwanted nonperturbative effect from
spontaneous symmetry breaking is small and the introduc-
tion of nonexceptional momenta has had the expected
effect. This is in contrast to the RI/MOM scheme with
the exceptional channel, where the same difference be-
haves as 1=ðmp2Þ, and thus diverges in the chiral limit at
finite p2.

The mass renormalization factor Z#
m, with # ¼

RI=SMOM or RI=SMOM!"
, is given by combining

Eqs. (77) and (80),

Z#
m ¼ 1

ZV

!S þ !P

!#
V þ !#

A

: (82)

In calculating the ratio of vertex functions in Eq. (82) we
take the average of S and P or V and A for each light-quark
mass and then fit with a quadratic [cþ c0ðml þmresÞ2]
or linear [cþ c00ðml þmresÞ] formula to obtain the value
c in the chiral limit for the numerator and denominator. For
illustration, the extrapolation for the numerator using the
quadratic formula is shown in Fig. 49, where the observed
mass dependence is seen to be very small. Because of the
very mild mass dependence, to the precision with which we
quote our results and errors, the quadratic and linear ex-
trapolation formulas lead to exactly the same quark mass
renormalization factor and error. Finally, taking the ratio
and combining with ZV gives the mass renormalization
factor in the RI/SMOM schemes. The renormalization
factor in theMS scheme at a scale " ¼ 2 GeV is obtained
by first matching the scheme # to MS at "2 ¼ p2

in ¼
p2
out ¼ q2 using Eqs. (71) and (72) and then running to

2 GeV using the three-loop anomalous dimension in the
MS scheme. We use the four-loop QCD beta functions [61]

to calculate $ð3Þ
s ð"Þ for running and matching as shown in

Appendix A of Ref. [14]. The relevant parameters taken
from the 2008 Particle Data Group [62] are

$ð5Þ
s ðmZÞ ¼ 0:1176; mZ ¼ 91:1876 GeV;

#mb ¼ 4:20 GeV; and #mc ¼ 1:27 GeV; (83)

where the quark masses are in the MS scheme at the scale

of the mass itself, e.g., #mb ¼ mMS
b ð #mbÞ.

In Fig. 50 we plot Z
SMOM!"
m ð"Þ and ZSMOM

m ð"Þ in the SU
(2) chiral limit as functions of "2 ¼ p2 for the 323 ensem-

bles. In addition we also plot ZMS
m ð2 GeVÞ as functions of
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FIG. 48 (color online). !P ( !S as a function of p2 [GeV2]
for fine (323) and coarse (243) lattices. A straight line with 1=p6

slope but arbitrary normalization is drawn to guide the eye.
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FIG. 49 (color online). The chiral extrapolation of ð!P þ
!SÞ=2 for the fine (323) lattice for each p2 point is shown.
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the matching scale p2 obtained with SMOM and SMOM!"

as the intermediate schemes. In an ideal situation, i.e., one
in which the errors due to NPE contamination, truncation
of perturbation theory and lattice artifacts are all small, the
results obtained using the two intermediate schemes would

give the same results for ZMS
m ð2GeVÞ, and the results would

be independent of ðpaÞ2. Since we have observed that the
NPE error is small, the difference between the two sets of
results is mostly due to the truncation of perturbation
theory and lattice discretization errors. The observed de-
crease in this difference as p2 increases is consistent with
the expected behavior of the truncation error. Conversely,
since the truncation error increases as p2 decreases, taking
the limit ðpaÞ2 ! 0, which is a typical treatment to elimi-
nate the discretization error, is not an appropriate proce-
dure. We therefore choose instead to evaluate Zm by taking
an intermediate reference point p2 ¼ ð2 GeVÞ2, for both
the 243 and 323 lattices. In this way, as we take the
continuum limit of the renormalized quark mass, the lead-
ing ðpaÞ2 discretization error associated with the nonper-
turbative renormalization will be removed.

There is a subtlety due to lattice artefacts which are not
Oð4Þ invariant and which are responsible for the non-
smooth ðpaÞ2 dependence in the figure. A term like
a2
P

"ðp"Þ4=p2, whose presence has been demonstrated

in the conventional RI/MOM scheme for Wilson quarks
[63], could exist also in the SMOM schemes. Such a term
would manifest itself as scattered data around a smooth
curve in p2, and the size of the scatter is expected to be
comparable to the leading ðpaÞ2 error as both are of the
same order in a2. This appears to be compatible to what is
shown in the figure. Of course, it would be very helpful to
know these terms, but in the absence of this knowledge we

include this scatter in the systematic error by inflating the

error by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2=dof

p
. The results are

ZMSð32Þ
m ð" ¼ 2 GeV; nf ¼ 3; SMOM!"

Þ ¼ 1:573ð2Þ;
(84)

ZMSð32Þ
m ð" ¼ 2 GeV; nf ¼ 3; SMOMÞ ¼ 1:541ð7Þ: (85)

The final arguments on the left-hand sides denote the
choice of intermediate scheme. The error on the right-
hand sides is the combination of the statistical fluctuations
and the scatter of the points around the linear fit. The
central values and errors are shown in the figure at the
reference point, p2 ¼ ð2 GeVÞ2.
The 243 coarser lattice has been analyzed similarly for

the ml ¼ 0:005, 0.01 and 0.02 ensembles and the results
are shown in Fig. 51. The mass renormalization factors on
the 243 lattice for the two intermediate SMOM schemes are

ZMSð24Þ
m ð" ¼ 2 GeV; nf ¼ 3; SMOM!"

Þ ¼ 1:578ð2Þ;
(86)

ZMSð24Þ
m ð"¼2GeV;nf¼3;SMOMÞ¼1:534ð10Þ: (87)

In Eq. (64) we have presented the bare-quark masses for
the fine 323 lattice and in Table XXVI we give the ratios of
equivalent bare masses on the 243 and 323 lattices. Because
of the different Oða2Þ artefacts for the light and heavy-
quark masses, there are two such ratios Zl for the ud quarks
and Zh for the s quark. These ratios Zl and Zh are also the
scheme-independent ratios of the renormalization con-
stants on the course and fine lattices. We now use these
ratios to estimate the difference of the MS renormalized
masses with the SMOM and SMOM!"

schemes in the

continuum limit. The continuum extrapolation of Zð32Þ
m
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FIG. 50 (color online). Z
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m ð"Þ and ZSMOM

m ð"Þ as func-

tions of "2 ¼ p2, and ZMS
m ð2 GeVÞ from the SMOM or

SMOM!"
schemes as a function of matching scale squared p2

for the fine lattice. The interpolation points are shown with the
error bar at p2 ¼ ð2 GeVÞ2.
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ð2:74 fmÞ3 spatial volume. We used four different light
dynamical quark masses in our simulations and the ratios
of these light masses to the physical strange quark mass are
0.217, 0.350, 0.617, and 0.884. A single value for the heavy
quark mass was used in all our simulations and its ratio to
the physical strange quark mass is 1.150. (An accurate
value for the physical strange quark mass was, of course,
not known until after our simulation was complete.) For
mesons made of degenerate light quarks, the corresponding
pseuduscalar meson masses are 331 MeV, 419 MeV,
557 MeV, and 672 MeV. We have also done measurements
with a variety of valence quark masses, with a ratio of the
smallest mass to the physical strange quark mass of 0.110,
corresponding to a pseudoscalar meson with a mass of
242 MeV. In a previous paper [16], we have given results
from simulations with the same gauge coupling constant,
but on a smaller volume, which gives us some understand-
ing of finite-volume effects.

To extrapolate from our simulation quark masses to the
physical values, we use chiral perturbation theory (ChPT),
which is an expansion of low-energy QCD observables in
powers of the meson masses and momenta over the pseu-
doscalar decay constant. Within the general framework of
ChPT one can consider only the pions to be light particles,
yielding an SUð2ÞL # SUð2ÞR ChPT [which we will call
SU(2) ChPT] or one can also consider the kaons as light,
yielding an SUð3ÞL # SUð3ÞR ChPT [which we will call
SU(3) ChPT]. In Sec. II, we discuss the domain wall
fermion (DWF) corrections to ChPT and develop SU(2)
ChPT for the kaon sector, which we will later use to fit our
data.

In Sec. III we give details of our simulations, including
the rational hybrid Monte Carlo (RHMC algorithm that we
use to generate our lattices. Section IV describes the
sources and sinks we use for our pseudoscalar observables,
our methods of determining desired quantities, and results
in lattice units. We will also use the mass of the ! baryon,
which has no corrections from chiral logarithms, as part of
our scale setting, and the details of the measurement ofm!

are given in Sec. V.
In Sec. VI we fit our lattice values for the masses and

decay constants of pseudoscalars to partially quenched SU
(2) ChPT at next-to-leading order (NLO). We find our data
are well described by the theoretical formula from Sec. II,
provided the pions have masses below about 420 MeV. We
use the fits to SU(2) ChPT as the most accurate way to
extrapolate our data to the chiral limit, since SU(2) ChPT
does not require the kaon mass to be small, but only
requires m! $ mK. Using the results for pseudoscalar
masses from our SU(2) ChPT fits and our lattice values
for the ! baryon mass, we fix the lattice scale and bare
quark masses using the known masses of the !, K, and !.
We find that our inverse lattice spacing is a%1 ¼
1:729ð28Þ GeV. In a separate work [21], we have used
nonperturbative renormalization to calculate the multipli-

cative renormalization factor needed to relate our bare
lattice quark masses to continuum MS masses. We find

mMS
ud ð2GeVÞ¼3:72ð0:16Þstatð0:33Þrenð0:18Þsyst MeV; (1)

mMS
s ð2 GeVÞ ¼ 107:3ð4:4Þstatð9:7Þrenð4:9Þsyst MeV; (2)

~mud: ~ms ¼ 1:28:8ð0:4Þstatð1:6Þsyst; (3)

where ð' ' 'Þstat, ð' ' 'Þren, and ð' ' 'Þsyst show the statistical
error, the error from renormalization, and the systematic
error. We assume the light quarks to be degenerate in this
work. We now predict values for f! and fK and find f! ¼
124:1ð3:6Þstatð6:9Þsyst MeV and fK ¼ 149:6ð3:6Þstat #
ð6:3Þsyst MeV. Our fits to SU(2) ChPT also determine the
low-energy constants (LECs) for pseudoscalar masses and
decay constants in SU(2) ChPT. Furthermore, implications
of our results to Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements are discussed.
In Sec. VII we fit our light pseudoscalar data to SU(3)

ChPT. Here we also find that our data are well represented
by SU(3) ChPT at NLO, provided our pseudoscalars have
masses below about 420 MeV. The failure of NLO SU(3)
ChPT to fit our data when pseudoscalar masses are near the
physical kaon mass rules out using NLO SU(3) ChPT in
this mass region. With light masses, we determine values
for the SU(3) LECs which agree well with values deter-
mined by others. However, we find a small value for the
decay constant in the SU(3) chiral limit, which we denote
by f0 (a complete description of our notation is given in the
Appendix A). Our fits give f0 ¼ 94 MeV, with conven-
tions such that the physical value is f! ¼ 131 MeV, and
this value is smaller than generally found phenomenolog-
ically, which we discuss further in Sec. VII. Along with
this we find that the size of the NLO corrections to SU(3)
ChPT, relative to the leading order term, is in the range of
50% or more. This makes the convergence of SU(3) ChPT
for these quark masses unreliable. Thus, although it repre-
sents our data well and the parameters we find generally
agree with others, we find the systematic errors in SU(2)
ChPT substantially smaller and use it as our most accurate
means of extrapolating our data to the chiral limit.
In Sec. VIII, we discuss our determination of the kaon

bag parameter, BK, which is needed to relate indirect CP
violation in the standard model to experimental measure-
ments. This section expands upon the data and analysis
presented in [19]. Here we also find extrapolations to the
physical quark masses to be under much better control with
SU(2) than with SU(3) ChPT. We present our estimates of
systematic errors, including finite size effects. We find

BMS
K ð2 GeVÞ ¼ 0:524ð0:010Þstatð0:013Þrenð0:025Þsyst.
In Sec. IX we present results for the couplings of light

vector mesons to vector and tensor currents. The results for
the ratios of the couplings of the vector mesons to the
vector and tensor currents (fV and fTV , respectively) in

the MS scheme at 2 GeV are fT"=f" ¼ 0:687ð27Þ;
fTK(=fK( ¼ 0:712ð12Þ, and fT#=f# ¼ 0:750ð8Þ.
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B. Renormalized quark masses

After the detailed discussion of the quark mass renor-
malization, it is now straightforward to combine the renor-
malization constants in Eqs. (92) and (93) with the physical
bare-quark masses on the 323 lattice in Eq. (64) to obtain
the light and strange-quark masses renormalized in MS
scheme:

mMS
ud ð2 GeVÞ ¼ ZMSð32Þc

ml ð! ¼ 2 GeV; nf ¼ 3Þ
$ ~mudð323Þ $ a%1ð323Þ

¼ 3:59ð13Þstatð14Þsysð8Þren MeV; (94)

mMS
s ð2 GeVÞ ¼ ZMSð32Þc

mh ð! ¼ 2 GeV; nf ¼ 3Þ
$ ~msð323Þ $ a%1ð323Þ

¼ 96:2ð1:6Þstatð0:2Þsysð2:1Þren MeV; (95)

where the three errors on the right-hand side correspond to
the statistical uncertainty, the systematic uncertainty due
to the chiral extrapolation and finite volume, and the error
in the renormalization factor. We recall that for the error
due to the chiral extrapolation we conservatively take the
full difference of the results obtained using the finite-
volume NLO SU(2) and analytic fits and for the central
value we take the average of these results. We estimate the
finite-volume effects from the difference of the results
obtained using finite-volume and infinite-volume NLO
ChPT fits and combine these errors in quadrature. The
finite-volume errors prove to be small. The error in the
renormalization factor includes those in Eqs. (92) and (93).

The ratio of the s and ud quark masses is

ms

mud
¼ 26:8ð0:8Þstatð1:1Þsys: (96)

We end this section by presenting our results for the
leading-order LEC B and the chiral condensate. Using the
finite-volume NLO ChPT fits we find

BMSð2 GeVÞ ¼ ZMSð32Þ%1
ml ð! ¼ 2 GeV; nf ¼ 3Þ

$ Bð323Þ $ a%1ð323Þ
¼ 2:64ð6Þstatð6Þsysð6Þren GeV: (97)

Combining this result with the pion decay constant in the
chiral limit, also obtained using the finite-volume NLO
ChPT fits the chiral condensate is found to be

½!MSð2 GeVÞ'1=3 ¼ ½f2Bð2 GeVÞ=2'1=3

¼ 256ð5Þstatð2Þsysð2Þren MeV: (98)

In Eqs. (97) and (98) the second error is only due to finite-
volume corrections estimated from the difference of finite
and infinite-volume NLO ChPT fits.

VII. TOPOLOGICAL SUSCEPTIBILITY

The topological charge Q, defined on a single Euclidean
space-time configuration, and its susceptibility, "Q, are
interesting quantities to calculate. While Q depends only
indirectly on the quark masses, leading-order SU(2) ChPT
[64,65] predicts a strong dependence of "Q on the light
with "Q vanishing linearly as ml ! 0, suggesting that "Q

may show important dynamical quark mass effects.
In the continuum Q and "Q are defined by

Q¼ g2

16#2

Z
d4xG!$ðxÞ ~G!$ðxÞ and "Q¼ hQ2i=V; (99)

where V is the four-volume of the lattice, G!$ðxÞ is the

gluon field strength tensor and ~G!$ðxÞ, its dual. In the
continuum, Q is integer valued and related to exact chiral
zero modes of the massless Dirac operator by the Atiyah-
Singer index theorem [66]. For sufficiently smooth gauge
fields it is possible to find a lattice expression which will
always evaluate to an integer [67], as in the continuum
limit. However, in the calculation reported here the neces-
sary smoothness condition is not obeyed and we instead
replace the right-hand side of Eq. (99) by a sum of Wilson
loops chosen to approximate the G!$ðxÞ ~G!$ðxÞ product in
Eq. (99). Specifically we employ the ‘‘five-loop improved’’
definition of the topological charge proposed in Ref. [68]
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FIG. 52 (color online). Monte Carlo time histories of the
topological charge. The light sea-quark mass increases from
top to bottom, [0.005 and 0.01, 243 (top two panels), and
0.004-0.008, 323]. Data for the 243 ensembles up to trajectory
5000 were reported originally in [1]; the results for later trajec-
tories and for the 323 ensembles are new and are plotted in black.
Most of the data was generated using the RHMC II algorithm
(red and black lines). The exceptions are the trajectories up to
1455 for the ml ¼ 0:01, 243ensemble for which the RHMC 0
(for the first 550 trajectories, green line) and RHMC I (for
remaining trajectories up to 1455, blue line) were used. The
small gap in the top panel represents missing measurements
which are irrelevant since observables are always calculated
starting from trajectory 1000.
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(2008)

(2010)

(i) symmetric or nonexceptional momentum configura-
tion:

p2
1 ¼ p2

2 ¼ q2 ¼ "!2; !2 > 0;

q ¼ p1 " p2;

(ii) asymmetric or exceptional momentum configura-
tion:

p2
1 ¼ p2

2 ¼ "!2; !2 > 0;

p1 ¼ p2; q ¼ 0;

where the momentum flow is shown diagrammatically in
Fig. 1.

In Ref. [14] quark masses were determined through
lattice simulations using nonperturbative renormalization
[1] in the RI/MOM scheme and subsequently converted to
the MS scheme. In order to renormalize the bare quark
masses in the lattice simulation, the renormalization con-
stants need to be computed on the lattice. In regularization
and renormalization schemes which preserve flavor and
chiral symmetries in the limit of vanishing quark masses,
the perturbative renormalization constants of the axial-
vector and vector operators as well as the ones for the
pseudoscalar and scalar operators need to be equal. In the
standard RI/MOM and RI0=MOM schemes the normaliza-
tion conditions for quark bilinear operators are imposed on
Green’s functions with the operator inserted between equal
incoming and outgoing momenta, say, p, and"p2 # !2 is
the renormalization scale. The momentum q inserted at the
operator is therefore 0 so that there is an exceptional
channel, i.e. one in which the square of the momentum is
much smaller than the typical large scale (!2). For the
asymmetric subtraction point effects of chiral symmetry
breaking vanish only slowly like 1=p2 for large external
momenta p2. In Ref. [15] it was proposed instead to use a
similar renormalization procedure but with the incoming
and outgoing quarks having different momenta, p1 and p2,
respectively, with p2

1 ¼ p2
2 ¼ ðp1 " p2Þ2 # p2. There are

now no exceptional channels and we explain below that
this decreases chiral symmetry breaking and other un-
wanted infrared effects. The choice of such a symmetric
subtraction point is very convenient; the renormalized
quantities depend also only on a single scale p2. When
the renormalization constants of quark bilinear operators
are fixed at a symmetric subtraction point (chosen to have
nonexceptional kinematics) chiral symmetry breaking and
other unwanted infrared effects are better behaved and
vanish with larger asymptotic powers of the order 1=p6.
This behavior has been derived in Ref. [15] as a conse-
quence of Weinberg’s theorem [16] and demonstrated by
explicitly computing the renormalization constants on the
lattice. Hence these RI/SMOM kinematics suppress infra-
red effects much more strongly than the usual exceptional
configuration for large external momenta. The symmetric
momentum configuration is thus much more favorable.
However, in order to be able to use it to evaluate the matrix
elements of quark bilinear operators and the quark mass,
the matching factors need to be determined perturbatively
for this new, symmetric choice of momenta. A nonpertur-
bative test of the RI/SMOM scheme for the quark mass
renormalization can be found in Ref. [17].
Another drawback in the case of the exceptional mo-

menta is that the perturbative expansion of the usual con-

version factor CRI=MOM
m shows poor convergence and

makes a significant contribution to the systematic uncer-
tainty in the quark masses obtained from the lattice studies.
In fact, in Ref. [14] the error ( & 11%) in the quark masses
arising from the truncation of the perturbative series in the
matching factor amounts to around 60% of the total error.
Therefore determining the conversion factor for a symmet-
ric momentum configuration will also allow us to see if the
convergence will be better behaved. If it is better behaved,
then the symmetric configuration would be preferred for
both of these reasons. Motivated by these considerations
we study in this work the renormalization of quark bilinear

nonsinglet operators of the form Ô ¼ !u"d for a symmetric
subtraction point, where " represents a Dirac matrix and !u
and d are fermion quark fields.
Even with the use of the symmetric, nonexceptional

kinematics, the renormalization prescription is not unique
and the chiral Ward-Takahashi identities can be satisfied
using a variety of procedures. In the following sections we
study a specific scheme which we consider to be conve-
nient and practicable for the nonperturbative renormaliza-
tion of lattice quark bilinear operators. In order to preserve
the Ward-Takahashi identity, the definitions of the vertex
and wave function renormalizations are related as we ex-
plain in the following section.
The outline of this paper is as follows: In Sec. II we

define our notation and conventions and introduce the
framework required for performing renormalization of
the quark bilinear operators with a symmetric subtraction
point. Subsequently we present in Sec. III two methods for

q = p1−p2

p1 p2

FIG. 1. Momentum flow of a generic diagram required for the
renormalization procedure with nonexceptional momenta. The
gray bubble stands for an operator insertion and higher order
corrections.
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the MS scheme. In order to renormalize the bare quark
masses in the lattice simulation, the renormalization con-
stants need to be computed on the lattice. In regularization
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pseudoscalar and scalar operators need to be equal. In the
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tion conditions for quark bilinear operators are imposed on
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the renormalization scale. The momentum q inserted at the
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respectively, with p2
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2 ¼ ðp1 " p2Þ2 # p2. There are

now no exceptional channels and we explain below that
this decreases chiral symmetry breaking and other un-
wanted infrared effects. The choice of such a symmetric
subtraction point is very convenient; the renormalized
quantities depend also only on a single scale p2. When
the renormalization constants of quark bilinear operators
are fixed at a symmetric subtraction point (chosen to have
nonexceptional kinematics) chiral symmetry breaking and
other unwanted infrared effects are better behaved and
vanish with larger asymptotic powers of the order 1=p6.
This behavior has been derived in Ref. [15] as a conse-
quence of Weinberg’s theorem [16] and demonstrated by
explicitly computing the renormalization constants on the
lattice. Hence these RI/SMOM kinematics suppress infra-
red effects much more strongly than the usual exceptional
configuration for large external momenta. The symmetric
momentum configuration is thus much more favorable.
However, in order to be able to use it to evaluate the matrix
elements of quark bilinear operators and the quark mass,
the matching factors need to be determined perturbatively
for this new, symmetric choice of momenta. A nonpertur-
bative test of the RI/SMOM scheme for the quark mass
renormalization can be found in Ref. [17].
Another drawback in the case of the exceptional mo-

menta is that the perturbative expansion of the usual con-

version factor CRI=MOM
m shows poor convergence and

makes a significant contribution to the systematic uncer-
tainty in the quark masses obtained from the lattice studies.
In fact, in Ref. [14] the error ( & 11%) in the quark masses
arising from the truncation of the perturbative series in the
matching factor amounts to around 60% of the total error.
Therefore determining the conversion factor for a symmet-
ric momentum configuration will also allow us to see if the
convergence will be better behaved. If it is better behaved,
then the symmetric configuration would be preferred for
both of these reasons. Motivated by these considerations
we study in this work the renormalization of quark bilinear

nonsinglet operators of the form Ô ¼ !u"d for a symmetric
subtraction point, where " represents a Dirac matrix and !u
and d are fermion quark fields.
Even with the use of the symmetric, nonexceptional

kinematics, the renormalization prescription is not unique
and the chiral Ward-Takahashi identities can be satisfied
using a variety of procedures. In the following sections we
study a specific scheme which we consider to be conve-
nient and practicable for the nonperturbative renormaliza-
tion of lattice quark bilinear operators. In order to preserve
the Ward-Takahashi identity, the definitions of the vertex
and wave function renormalizations are related as we ex-
plain in the following section.
The outline of this paper is as follows: In Sec. II we

define our notation and conventions and introduce the
framework required for performing renormalization of
the quark bilinear operators with a symmetric subtraction
point. Subsequently we present in Sec. III two methods for
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l fishing ~ 2006-
l L. McLerran got me into the sea kayak fishing

l K. Fukushima was more successful
l I went to shore w/ Kenji many times, 

occasionally w/ T. Doi, K. Toru

recreations

l ten samurai – softball team
l ~2000: captain Y. Nara,  G. Bunce, T. Blum, and many other Japanese
l ~2006: captain YA, I. Nakagawa, C. Marquette, ..
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l Dec. 2010 〜 Apr.  2016 Kobayashi-Maskawa Institute, Nagoya
l LatKMI collaboration: many flavor (near conformal) QCD <-> Higgs

l involving RBRC alumni: H. Ohki, T. Yamazaki, E. Rinaldi (student JPS visitor in 2011)

While back in Japan for 2010~
I was visiting RBRC/BNL occasionally for

l proton decay form factor with: E. Shintani
l neutral B meson mixing : RBC: T. Ishikawa, C. Lehner
l Takuʼs idea of AMA being ported to proton decay: E. Shintani

my relation with RBRC



l May. 2016 〜 Jan. 2019 KEK
l my main projects are finite temperature DWF in JLQCD (to be continued at Fugaku

l Oct.  2016 〜 July 2018 RBRC fellow (cross appointment)
l Oct.  2018 〜 R-CCS (Kobe, Japan)

~one month stay in RBRC some times in year:
l proton decay study @ physical point : S. Syritsyn, J-S. Yoo
l discuss MDWF simulation / finite temperature being done in JLQCD
l discuss LatKMI research w/ E. Rinaldi, H. Ohki
l catching up state of the art research: g-2 etc

my relation with RBRC



l May thanks to admin staff for help
l ~2000:    H. Horie, R. Greenberg, T. Heinz, P. Esposito, T. Ito
l ~2002:    C. Shimoyamada
l ~2006:    Maruyama, E. Adachi
l ~2016:    H. Ito

my relation with RBRC



What Iʼm up to now:

history of universe : phase transition ?
matter formation
… 



l Nf=2+1 thermodynamic property 
l through chiral symmetric formulation
l Order of the transition
l (pseudo) critical temperature
l Location of the phase boundary
l Near the physical point

l Chiral symmetric formulation
l Ideal to treat flavor SU(2) and U(1)A properly
l Domain wall fermion (DWF) : practical choice

l DWF and chirality
l Fine lattice needed 
l Aiming for ! < 0.08 fm (eventually)
l Current search domain:  0.07 ≤ ! ≤ 0.14 fm
l Current criticality range: 0.08 ≤ ! ≤ 0.13 fm

?

?

Columbia plot and QCD phase



For the Line of Constant Physics: !"!($) with !($)
l Step 1: determine !($) [fm] with &" (BMW) input

l at ' = ). +, 4.1∗, 4.17, 4.35, 4.47

* '=4.0 new data (previous step5), to add support at small β
l Step 2: determine 2$(') using NPR results     

l at ' = 4.17, 4.35, 4.47

l And use 2$(') so obtained for ' ≥ 4.0 : ' < 4.17 region is extrapolation 
l 1/2$ ' will be used to renormalize scalar operator

l Step 3: solve !"!($) with input (quark mass input): 
l 7%& = 2$ ⋅ 97%'())⋅ 9*+ = 92 MeV

l
$!
$"#

= 27.4 (See for example FLAG 2019)

l See for details in Lattice 2021 proc by S.Aoki et al.
Do simulation
l Step 4: proper tuning of input mass: correct mres

l Step 5: use 9(') including new data at ' = 4.0

l For dimension-full quantities
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Nf=2+1 Möbius DWF LCP for FY2021 FY2023-



Features
l Fine lattice: use of existing results (0.04 ≤ % ≤ 0.08 fm)

l Granted preciseness towards continuum limit
l Coarse lattice parametrization is an extrapolation

l Preciseness might be deteriorated
l Newly computing '! e.g. at ( = 4.0	(lower edge) might improve, but not done so far

l NPR of 2$ at 9*+ ≃1.4 GeV may have sizable error (window problem) anyway
l Smooth connection from fine to coarse should not alter leading + %"

l Difference should be higher order
l Error estimated from Kaon mass

l Δ-# ~ 10 % at ( = 4.0	 (% ≃ 0.14 fm)  → Δ-# ~ a few %
l Δ-# ~ a few % at ( = 4.17	(% ≃ 0.08 fm)
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l Möbius DWF → OVF by reweighting
l Successful (w/ error growth) at ' = 4.17 (9 ≃ 0.08 fm)

l See Lattice 2021 JLQCD (presenter: K.Suzuki)

l Questionable for
l Coarser lattice: rough gauge, DWF chiral symmetry breaking
l Finer lattice:     larger V (# sites)

l Chiral fermion with continuum limit
l A practical choice is to stick on DWF

l Controlling chiral symmetry breaking with DWF
l WTI residual mass 7,-%: 7./ ∝ 70 +7,-% (1 + ℎ. A. )

l Understanding  7,-% ' with fixed B% (5-th dim size)

l !!"#[#$%] ∼ ($,  where ) ∼ 5
l Vanishes quickly as 9 → 0

l 1st (dumb) approximation: forget about 7,-%
l Better : 70123) ↔ 70 +7,-% but, this is not always enough
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Simulation plan: 2nd round
w/ treatment of !!"# effect

l T2-(c)
l #! = 16
l '" = 0.1'#
l '$%# shift by reweighting
l *# = 32&

• T1-(p)
• !D = 12
• %E = %FG

• %H
IJKFD = %H

LMN −%OPQ

• 'Q = 24R

• T1-(d)
• !D = 12
• %E = 0.1%Q

• %H
IJKFD = %H

LMN −%OPQ

• 'Q = 24R, 323

!1 = 12 fixed throughout this study
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l [JLQCD] S. Aoki, Y. Aoki, H. Fukaya, J. Goswami, S. Hashimoto, I. Kanamori, T. 
Kaneko, Y. Nakamura, Y. Zhang,…

l R & D for the Nf=2+1 thermodynamics with Line of Constant Physics (LCP) 
- Codes: Grid, Hadrons, Bridge++
- LCP / Reweighting
- Chiral order parameter and renormalization
- Quark number susceptibility

l Nf=2+1    - thermodynamics with LCP (''( = '#/10 〜3''(
)*+#)

- 2 step renormalization for chiral condensate (power and log divergence)
- 2 lattice spacings Nt=12, 16
- 3 volumes Ns/Nt=2, 3, 4
- No phase transition !

- Tpc determined %!" = 165(2) MeV
- PPR-Fugaku FY2020-2022
- [PoS Lattice 2021, 2022] / 6 invited talks

l Next : physical point FY2023-

T>0  QCD using fine lattice chiral fermions
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l Related with this project
l DWF thermodynamics at physical point
l Accelerating simulation with machine learning : collaboration with A. Tomiya

l one postdoc position @ R-CCS Kobe Japan is available now!

l please check a lattice-jobs posting early today



my experience in this community especially Tsukuba 〜 RBRC

l I was lucky.  But itʼs not just like that.
l There are people who made planning for things work like this way.

l So I think there are may lucky for those involved in RBRC not only myself,
l thanks to management by good hands: TD. Lee, N. Samios, M. Ishihara, H. Ennʼyo

l to all fellow researchers for me: T. Baltz, R. Pisarski, L. McLerran, T. Izubuchi,..
l and to administration people

l So I should always remember
l passions that inspire me
l wisdoms that fascinate me
l warmth that makes me feel at home
l from people involved in RBRC 

l Now I need to start for my team to make it such an environment
l well I already have been trying
l but now with these reminiscences for RBRC, I feel like really challenging.

l and try put them into practice



Congratulations RBRC
for 25 years!


