Gertrude Scharff-Goldhaber Prize 2023 presented to Xiaofeng Wang

Brookhaven National Laboratory

- "I have been fascinated by physics since I was a young student, I wanted to understand the fundamental nature of matter and energy and the origin and evolution of the universe."
- Wang's study of the Breit-Wheeler process began in the autumn of 2019, under the supervision of Zhangbu Xu (BNL), Chi Yang (Shandong University), and James Daniel Brandenburg (Ohio State University).

Energy Dependence of Breit-Wheeler Process in Heavy-Ion Collisions and Its Application to Nuclear Charge Radius Measurements

Xiaofeng Wang (王晓凤) Scharff-Goldhaber Prize Ceremony August 15, 2023

Outline

• Quark Gluon Plasma in Heavy Ion Collisions

- Breit-Wheeler Process in Heavy Ion Collisions
- Application of Breit-Wheeler Process
 - ✓ Study the properties of quark gluon plasma
 - ✓Map the magnetic field
 - ✓ Constrain nuclear charge radii
- Summary and Perspective

Configuration of Atom

Quarks/gluons: confined in protons and neutrons through strong force

Quark Deconfinement

<complex-block>

Quark-Gluon Plasma (QGP):

A new state of quark and gluon degrees of freedom

Is it possible to observe QGP in the laboratory?

8/15/23

Relativistic Heavy Ion Collisions: Heated to 10¹² K !!

The core temperature of the sun: $2*10^7$ K (quarks are still confined in hadrons)

T. D. Lee (1926-) the Nobel Prize in Physics in 1957

T. D. Lee and G. C. Wick, Phys. Rev. D 9, 2291 (1974). Vacuum stability and vacuum excitation in a spin-0 field theory.

Hottest Temperature in the Lab: About 10^5 times hotter than the center of the Sun

QGP can be created in relativistic heavy ion collisions

Relativistic Heavy Ion Collider (RHIC) and STAR

RHIC can create QGP

Solenoidal Tracker At RHIC (STAR) can measure the properties of QGP

Dielectron: No strong interaction \rightarrow Ideal electromagnetic probe for probing QGP properties

The Breit-Wheeler Process : $\gamma \gamma \rightarrow e^+ e^-$

Breit-Wheeler process:

converting **real** photon into e^+e^-

Breit & Wheeler, Phys. Rev. 46 (1934) 1087

8/15/23

The Breit-Wheeler Process : $\gamma \gamma \rightarrow e^+ e^-$

Hard to observe

 The cross section is small
The insufficiently large available densities of photon

Breit-Wheeler process:

converting **real** photon into e^+e^-

Breit & Wheeler, Phys. Rev. 46 (1934) 1087

The Breit-Wheeler Process : $\gamma \gamma \rightarrow e^+ e^-$

Hard to observe

The cross section is smallThe insufficiently large

available densities of photon

Breit-Wheeler process:

converting **real** photon into e^+e^-

Breit & Wheeler, Phys. Rev. 46 (1934) 1087

of quanta. In the considerations of Williams, however, the large nuclear electric fields lead to large densities of quanta in moving frames of reference. This, together with the large number

Ultra-Peripheral Heavy Ion Collisions (UPCs)

- Highly Lorentz-contracted charged nuclei produce electromagnetic fields (EM)
- ◆ Equivalent Photon Approximation (EPA): EM fields → a flux of quasi-real photons

Weizsäcker, C. F. v. Zeitschrift für Physik 88 (1934): 612

- High photon density from highly charged nuclei ($\propto Z^2$)
- Virtuality $Q^2 \leq (\hbar/R_A)^2$ in UPCs \Rightarrow almost real

Ann.Rev.Nucl.Part.Sci. 55 (2005) 271-310

◆Virtuality cancels at low photon transverse momentum

Vidovic, M. and Greiner, M. and Best, C. Phys.Rev.C 47 (1993) 2308-2319

 \vec{E}

 \vec{R}

 $v \approx c$

h

 $v \approx c$

STAR, PRL 127 (2021) 052302

8/15/23

Breit-Wheeler Process in Hadronic Heavy Ion Collisions (HHIC)

Photon-induced dielectrons as probes to study the properties of QGP in HHIC

Breit-Wheeler Process in Hadronic Heavy Ion Collisions (HHIC)

Photon-induced dielectrons as probes to study the properties of QGP in HHIC

Extracting the signal in signal/background is only 1%!

The first measurement of 80-100% centrality at STAR

Invariant Mass Distribution at Low- p_T

Excesses (Data - Cocktail) are extracted

Excesses are well described by lowest order EPA-QED predictions

Energy Dependence of Excess Yield

Excess yield increase with beam energy

EPA-QED predicts similar energy dependence

Energy Dependence of $\sqrt{\langle p_T^2 \rangle}$

• The $\sqrt{\langle p_T^2 \rangle}$ of e^+e^- pairs decreases with increasing beam energy

Energy Dependence of $\sqrt{\langle p_T^2 \rangle}$

- The $\sqrt{\langle p_T^2 \rangle}$ of e^+e^- pairs decreases with increasing beam energy
- Indication of final state effect

8/15/23

Are There Final-State QED Effect?

higher statistics

STAR collaboration Beam Use Requests for Run-23-25

Upgrade of inner Time Projection Chamber

lower p_T , lower systematic uncertainty

Energy Dependence of Cross Section and $\sqrt{\langle p_T^2 \rangle}$

The kinematics of the Breit-Wheeler process are sensitive to the details of the nuclear charge distribution

X. W, J.D. Brandenburg, L. Ruan, F. Shao, Z. Xu, C. Yang, and W. Zha. Phys. Rev. C 107, 044906 (2023)

Xiaofeng Wang@Scharff-Goldhaber Prize Ceremony

R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577–578 (1954)

Woods-Saxon: $\rho_A(r) = \frac{\rho^0}{1 + \exp[(r - R)/d]}$

R: charge radius, d: skin depth

R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577–578 (1954)

Woods-Saxon:

R: charge radius, d: skin depth

 $\rho_A(r) = \frac{\rho^0}{1 + \exp[(r - R)/d]}$

STAR

 $\rho_A(r) = \frac{\rho^0}{1 + \exp[(r - R)/d]}$

R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577–578 (1954)

Woods-Saxon:

R: charge radius, d: skin depth

R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577–578 (1954)

Woods-Saxon:

 $\rho_A(r) = \frac{\rho^0}{1 + \exp[(r - R)/d]}$

R: charge radius, d: skin depth

Application: Constrain Charge Distribution with Precision

RMS of radius, low-E e-scattering: 5.33 fm

	UPC	MB	UPC+MB
RMS	5.39+0.14-0.21	5.67+0.08-0.12	5.53+0.10-0.02

UPC consistent with nominal nuclear geometry

Peripheral collisions systematically larger

Indication of final state effect in HHIC

X. W, J.D. Brandenburg, L. Ruan, F. Shao, Z. Xu, C. Yang, and W. Zha. Phys. Rev. C 107, 044906 (2023)

Summary

- Breit-Wheeler process has been measured at STAR
 - ✓ **The kinematics** of the Breit-Wheeler process have beam energy dependences
 - $\checkmark \sqrt{\langle p_T^2 \rangle}$ and nuclear charge radius: Indication of final state effect
- Application: Breit-Wheeler process can be used to map the magnetic field and constrain nuclear charge distribution

Summary

- Breit-Wheeler process has been measured at STAR
 - ✓ The kinematics of the Breit-Wheeler process have beam energy dependences
 - $\checkmark \sqrt{\langle p_T^2 \rangle}$ and nuclear charge radius: Indication of final state effect
- Application: Breit-Wheeler process can be used to map the magnetic field and constrain nuclear charge distribution

Perspective

- The high-statistics data produced by STAR from 2023 to 2025, can be used to search for the final state effect from QGP
- Recently, the LHC has also measured the dilepton production via photon fusion. We can use these results to measure the charge radius of the lead nucleus

Acknowledgement

Lijuan Ruan

Shuai Yang

Wangmei Zha Zebo Tang

Zhen Wang

📍 Kaifeng Shen 🕴 Jian Zhou

SDU STAR Group

37

Acknowledgement

Lijuan Ruan

Shuai Yang

Wangmei Zha

Zebo Tang

Kaifeng Shen Jian Zhou

Xin Wu

SDU STAR Group

Thanks for your attention! 38