

🚫 IP PARIS

ROC chips introduction

for EIC

June 8 2023

Frederic DULUCQ – fdulucq@in2p3.fr Ecole Polytechnique – CNRS

Organization for Micro-Electronics desiGn and Applications

- □ HGCROC / H2GCROC (for SipM) and ALTIROC are LHC colored ASICs (external L1 trigger)
 - Below is an calorimetry structure (not pixel like ALTIROC or EICROC but interfaces are similar)

HGCROC overview

□ HGCROC integrates 72 channels to readout (+2 Calib, +4 CM):

- □ 192-ch sensor with a 64-ch configuration
- □ 432-ch sensor with a 72-ch configuration

HGCROC for the endcap calorimeter – Phase II

6M of Silicon channels (+ 240k of SiPM)

Radhard (200 Mrad) Low Power (15 mW per chn) Precise timing (25 ps)

Total of 150k ASICs needed Pre-prod this year Project started in 2017

HKROC was developed in 6 months

Same ASIC structure (floorplan) Same ADC and TDC Same readout

> New preamplifier New digital processing

HEP trend => imaging calorimetry

- □ High number of channels
- □ Charge and precise timing (<50 ps)
- □ Low power + System-On-Chip

Based on HGCROC, HKROC-based electronics will provide a versatile, lowpower and fully integrated solution for large neutrino experiments

From HGCROC to HKROC

HKROC is 36 channels: 12 PMTs with High, Medium and Low gain

□ Charge (2500 pC) and time measurements (25 ps)

HKROC: waveform digitizer with auto-trigger

HKROC is waveform digitizer working @ 40 MHz

- Number of charge sampling points from 1 to 7
- □ Fast channel for precise timing (25 ps binning)
- Charge reconstruction algorithm in FPGA

HKROC can accept consecutive events (separated by ~30 ns) Internal HKROC memory writing is without dead time Readout speed is only limited by serial link bandwidth (average values above)

> This auto-triggering scheme could be added to HGCROC-EIC (same front-end, new back end)

lega

□ HGCROC / H2GCROC (for SipM) with the integration of auto-triggering

Below is an calorimetry structure (not pixel like ALTIROC or EICROC but interfaces are similar)

- Each event passing the threshold is readout
- Check Hit rate
- Auto-trigger with N "samples" (1 to 7) (Same as HKROC)

HGCROC/HKROC internal clocking scheme

From HGCROC/HKROC to EIC (alternatives with 200 M)

Omega

Propagate a 200 MHz (twice EIC clock)

- □ New fast command needed with less commands (32 instead of 256)
- □ Able to recreate 40 M
- Need to verify duty cycle impact but seems limited
- □ Close from HGCROC HKROC but only if needed

Fast commands	Description
Idle	Default, clock phase inside
External trigger	Pedestal measurement
Calibration Int	800 ns calib pulse
Calibration Ext	100 ns calib pulse
ChipSync	Fast digital reset
Link sync	idle pattern for 400 cycles
Counter reset	Init counters

Not 50 % duty cycle (pll input)

Conclusion

Omega

port (I2C)

- □ HGCROC could be transformed to be auto-trigerred
 - □ Analog front-end + ADC/TDC remain the same
- □ ASIC internal clock should remain 40 MHz
 - □ Limited by ADC (and also the TDC)
 - □ Ideally keep the fast command unit (320 MHz + Data both differentials)
- □ Alternative with internal 40M clock coming with a 200 MHz
- Hit rate should be checked (1 signal above the threshold will output N (3 or 4) points
 HKROC (N=3): 1 serial link @ 1,28Gps for 9 channels => max 100 kHz rate
 Can be exercised with existing HGCROC and L1A

From HGCROC/HKROC to EIC (alternatives with 100 M)

Propagate 100 MHz

Not ideal

Not able to recreate 40M

mega 100 MHz only 5b new FC unit 100 MHz Fast Fast command (FC) commands 20 MHz **20 MHz** (DC = 2/5) FC phase locked free running PLL

40, 160, 320,

640 MHz

ADC - TDC

Serial

links

Main

logic

Command 256 -> 32 possibilities ? Not 50 % duty cycle (pll input)

I2C

From HGCROC/HKROC to EIC

- Depending on the "hit rate", we could move to an auto-triggered architecture (like HKROC)
 - □ I2C must remain independent of the PLL (to load the parameters during startup)
 - □ ADC is not able to go higher than 40 MHz → need to remain the same

ADC max operating freq. is 40 M with all corners (tricky object)

I2C must be attached to a free running clock

Try to not change clock architecture

40 M phase is controlled

mega

From HGCROC/HKROC to EIC (alternative with 40M)

Propagate 40 MHz instead of 320 Mhz

- Need to wait the PLL to receive fast commands
- Possible, not preferred due to the clock loop
- □ Need to be aligned with the 40M of the ASIC

ADC max operating freq. is 40 M with all corners (tricky object)

I2C must be attached to a free running clock

Try to not change clock architecture

40 M phase is controlled

Possible clocking scheme - HGCROC-EIC Propagate a 40 MHz (aligned with 320 M)

HGCROC detailed

- Detail the functionality of this part
- Detail the design process used

Main experimental results with HKROC0 - Pile-up

- □ Measurement with 2 events separated by ~30 ns (full chain: analog, digital and reconstruction)
 - □ Signals auto-triggered (internal prommagble threshold)

mega

Charge reconstruction algorithm of the two peaks

Good linearity of reconstructed pile-up events

We can reconstruct both peaks properly !

High Granularity Timing Detector in HL-LHC

Flex PCB

Sensor

ALTIROC

Wire bonding

ASIC'S REQUIREMENTS	from Marisol Robles Manzano on Thursday, 9h20
25 channelsAinimum charge: 2 fCCharge dynamic: up to 100 fCise: < 0.5 fC or 3 ke ⁻	TOA TDCResolution: 20 psMeasurement window: 2.5 nsConversion time: < 25 ns
Cross-talk: < 2 %	TOT TDCResolution: 120 psDynamic range: 20 ns
Calibration LGAD-like injection :	Conversion time : < 25 ns
Rise time : 0.5-1.5 ns	Radiation tolerance TID : 2 MGv w/SF=2.25
Luminosity : Number of hits per ounch crossing for 2 time windows	NIEL : 2.5 $10^{15} n_{eq}/cm^2$ w/SF=1.5 SEE : $10^{15} n_{eq}/cm^2$ w/SF=1.5 SEU rate : < 5 % per hour
e bonding HV	ASIC power dissipation < 1.2 W
Connector Assembling with insulating glue Bump bonding	Per channel : Analog very front-end : < 2 mW TDC : 0,5 mW at 10 % occupancy Digital : < 2 mW

Talk on the long Flexible Printed Circuits

ATLAS HGTD Electroni€S_29₩EPP Bergen – 20 September 2022

ATLAS HGTD: ALTIROC ASIC

- ALTIROC (Atlas Lgad Timing Integrated ReadOut Chip)
 - Design under OMEGA responsibility Collaboration CERN Geneva, LPCF Clermont-Ferrand, IFAE Barcelona, SLAC Stanford, SMU Dallas
 - 20 ps timing silicon timing detector for jet identification and pileup rejection
 - ⇒ Pixel ASIC for precise timing measurements
 - **Qmin/Cd** ~ 500 μ V with Cd ~4 pF (1300 x 1300 μ m2) and Vth min= 2 fC to be compared with other timing ASIC for which Qmin/C > 2 mV with Cd ~ 50 fF (50 x 50 μ m²) and Vth min = 0.1 0.2 fC
 - Mix of requirements specific to calorimetry and some of the requirements specific to pixel ASICs for trackers
 - Mix of Analog on Top design for the floorplan and analog performance + Digital on Top design for digital part (70% of the ASIC)
 - ALTIROC2 : first 225 channels full matrix LGAD readout chip with 1 GHz preamplifier 4 pF detector capacitance = new territory in HEP

See details in https://indico.cern.ch/event/1127562/contributions/4904499/attachments/2511666/4317317/ ALTIROC2_ATLAS_HGTD.pdf

