
Christopher Dilks

EIC RICH Consortium
Inaugural Meeting

16 June 2023

ePIC RICH Simulation Synergies

C. Dilks PID Algorithms & Data
2

Outline

Overview of ePIC Software

Geometry

Reconstruction
– Data Model
– Algorithms

Benchmarks

Opportunities for collaboration and synergy will be discussed along the way

C. Dilks PID Algorithms & Data
3

Outline

Overview of ePIC Software

Geometry

Reconstruction
– Data Model
– Algorithms

Benchmarks

Opportunities for collaboration and synergy will be discussed along the way

C. Dilks PID Algorithms & Data
4

Overview of ePIC Software: Simulation

Repository names in bold

All in the EIC Organization on Github

● Except for benchmarks, on EICweb

For Write Access:

● Become a member

● Then after you have access,

Join the ePIC Devs team

https://github.com/eic
https://eicweb.phy.anl.gov/EIC
https://github.com/eic
https://github.com/orgs/eic/teams/epic-devs

C. Dilks PID Algorithms & Data
5

drich-dev: Developer Tools for the dRICH

https://github.com/eic/drich-dev
– “Gateway” to ePIC software for the dRICH
– Includes (historical) support for the pfRICH
– Aims to be a starting point for Cherenkov simulations and reconstruction in

general

dRICH Tutorial Series
– https://github.com/eic/drich-dev/blob/tutorial/doc/tutorials/README.md
– Not completely focused on the dRICH
– Weekly, Friday at 10AM US/Eastern

● See https://indico.bnl.gov/event/19679/ for the first one

– Tutorial #2 of 6 starting in ~1 hour
● https://indico.bnl.gov/event/19680/
● Meeting ID and PW: 91350671308 357599

https://github.com/eic/drich-dev
https://github.com/eic/drich-dev/blob/tutorial/doc/tutorials/README.md
https://indico.bnl.gov/event/19679/
https://indico.bnl.gov/event/19680/

C. Dilks PID Algorithms & Data
6

Outline

Overview of ePIC Software

Geometry

Reconstruction
– Data Model
– Algorithms

Benchmarks

C. Dilks PID Algorithms & Data
7

Geometry: Based on DD4hep

https://github.com/eic/epic

pfRICH
(legacy DD4hep)

pfRICH
(GDML → DD4hep) dRICH

Synergy

Shared material and
surface properties

Shared common definitions

Try to keep conventions
the same between the
detectors, where applicable
(e.g., dRICH and pfRICH)

Share bug fixes and
improvements

https://github.com/eic/epic

C. Dilks PID Algorithms & Data
8

pfRICH in DD4hep

Legacy DD4hep design
– Used in ATHENA, re-scaled for ePIC
– Not really used nowadays… but it also serves as a standalone RICH example

in the DD4hep software itself, to help guarantee stability of Cherenkov
physics for all DD4hep users (beyond ePIC)

Standalone Geant4 pfRICH:
– Export to GDML → Import in DD4hep
– Things to think about:

● Sustainability: this GDML creation should be reproducible by the `epic` DD4hep code
● Global Connection: the pfRICH geometry creation should use the global geometry

parameters of ePIC, so its positioning and size can be set and read by `epic`
● Activation: the GDML pfRICH sensors should be made DD4hep-sensitive and have a

DD4hep readout, similar to the dRICH sensors
● Alternative: “port” the standalone pfRICH to DD4hep

C. Dilks PID Algorithms & Data
9

Outline

Overview of ePIC Software

Geometry

Reconstruction
– Data Model
– Algorithms

Benchmarks

C. Dilks PID Algorithms & Data
10

Reconstruction Framework: EICrecon (JANA2 based)

Two types of Objects:

Collection
● A set of objects, such as “digitized hits”, or “PID hypotheses”
● Defined as “datatype” in the Event Data Model (EDM) – see next slides

Algorithm
● An algorithm transforms collection(s) into collection(s)
● Examples:

● Digitizer
● Input: truth-level simulated hits
● Output: digitized raw hits

● Algorithms should be:
● Configurable – allow (external) configuration to tune for specific use cases or subsystems
● Focused – don’t write a monolith
● Shareable – some algorithms can be useful for multiple subsystems
● Not dependent on EICrecon or JANA2 – Modularity → Standalone IRT is an example
● See Sylvester’s CHEP 2023 talk

https://github.com/eic/EICrecon

https://indico.jlab.org/event/459/contributions/11419/
https://github.com/eic/EICrecon

C. Dilks PID Algorithms & Data
11

Event Data Model (EDM) – at the General level

EDM4hep: https://github.com/key4hep/EDM4hep
– General data model shared by several HEP experiments

https://github.com/key4hep/EDM4hep

C. Dilks PID Algorithms & Data
12

Event Data Model (EDM) – at the General level

EDM4hep: https://github.com/key4hep/EDM4hep
– General data model shared by several HEP experiments

In output ROOT files,
each datatype becomes
a TTree branch

(can also use a PODIO
frame reader)

https://github.com/key4hep/EDM4hep

C. Dilks PID Algorithms & Data
13

Event Data Model (EDM) – at the General level

EDM4hep: https://github.com/key4hep/EDM4hep
– General data model shared by several HEP experiments

● “ParticleID” is the main
datatype for PID

In output ROOT files,
each datatype becomes
a TTree branch

(can also use a PODIO
frame reader)

https://github.com/key4hep/EDM4hep

C. Dilks PID Algorithms & Data
14

Event Data Model (EDM) – at the General level

EDM4hep: https://github.com/key4hep/EDM4hep
– General data model shared by several HEP experiments

● “ParticleID” is the main
datatype for PID

● One-to-many relation from
“ReconstructedParticle”
datatype to “ParticleID”

In output ROOT files,
each datatype becomes
a TTree branch

(can also use a PODIO
frame reader)

https://github.com/key4hep/EDM4hep

C. Dilks PID Algorithms & Data
15

EDM – at the EIC level

EDM4eic: https://github.com/eic/EDM4eic
– Experiment-specific data model; extends EDM4hep
– Allows deviations from EDM4hep, where needed, e.g.,

● edm4hep::ReconstructedParticle vs. edm4eic::ReconstructedParticle
● Custom datatype for Cherenkov physics
● Custom datatype for TOF physics

To view the data models, see the YAML files:
● EDM4hep: https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml
● EDM4eic: https://github.com/eic/EDM4eic/blob/main/edm4eic.yaml

https://github.com/eic/EDM4eic
https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml
https://github.com/eic/EDM4eic/blob/main/edm4eic.yaml

C. Dilks PID Algorithms & Data
16

Algorithms & Collections → Reconstruction Building Blocks

Synergy:
● EDM4* Datatypes are shared anywhere
● Algorithms can also be shared
● Let’s work together!

C. Dilks PID Algorithms & Data
17

dRICH PID Plugin: Algorithm Flowchart – Part 1 of 3

Click here for enlarged version and more

https://github.com/eic/EICrecon/tree/main/src/detectors/DRICH

C. Dilks PID Algorithms & Data
18

dRICH PID Plugin: Algorithm Flowchart – Part 2 of 3

Click here for enlarged version and more
Track params MCParticles

https://github.com/eic/EICrecon/tree/main/src/detectors/DRICH

C. Dilks PID Algorithms & Data
19

dRICH PID Plugin: Algorithm Flowchart – Part 3 of 3

Click here for enlarged version and more
Track params MCParticles

https://github.com/eic/EICrecon/tree/main/src/detectors/DRICH

C. Dilks PID Algorithms & Data
20

Algorithm: Digitization

Common PMT Digitizer Algorithm
● Trigger parameters (gate, pedestal, etc.)
● Quantum Efficiency
● Empirical Safety Factor 70%
● Sensor pixel gap mask (~88% survive)
● Noise injection

● TODO: Time over Threshold (ToT)
● TODO: Refine configuration parameters

λ QE

Configuration Parameters: externally configurable

Synergy: this is a common
algorithm anyone can use
and improve

C. Dilks PID Algorithms & Data
21

Algorithm: Digitization

1γ

2γ

3γ+

SiPM pixel gaps

C. Dilks PID Algorithms & Data
22

Algorithm: Digitization – Noise Injection

Slide from Luigi Dello Stritto

C. Dilks PID Algorithms & Data
23

Data Model: Digitized Hits

● pixel ID
● ADC
● TDC

← True photons

C. Dilks PID Algorithms & Data
24

Algorithm: Charged Particle Track Projection

Example: 4 GeV pions in horizontal y=0 plane

Propagate to xy-planes in the dRICH radiators

● 5 planes in aerogel

● 10 planes in gas

Reconstructed track points in Aerogel and Gas (and the merged combination)

Synergy: Can be used by the pfRICH and others

4 GeV π–

5 points in aerogel

10 points in gas

track

C. Dilks PID Algorithms & Data
25

Data Model: Charged Particle Track Points

TrackSegment: a set of TrackPoints

TrackPoints: the
projected points:
● position
● momentum
● time
● and more

C. Dilks PID Algorithms & Data
26

PID Algorithm: Inputs

Digitzed Hits Charged Particle Track Projections

PID

C. Dilks PID Algorithms & Data
27

PID Algorithm: Indirect Ray Tracing (IRT)

Figures from Alexander Kiselev, From meeting on RICH Pattern Recognition Challenges
https://agenda.infn.it/event/30966/

https://github.com/eic/irt

Given sensor hits and optics, determine the photon emission angle, sampled along a charged particle trajectory

Newton-Gauss iterative solver for optical path

Compact, standalone library used for Geant4 and ATHENA

Interfaced with EICrecon (and Juggler) for ePIC

Used by both
dRICH and pfRICH

https://agenda.infn.it/event/30966/
https://github.com/eic/irt

C. Dilks PID Algorithms & Data
28

PID Algorithm: Alternatives

● To be integrated with EICrecon

● Synergy: The doors are open for development & integration!

● Inputs are available

● Handling of outputs implemented

● Working with Oskar Hartbrich – TOF & Cherenkov PID Synergy

C. Dilks PID Algorithms & Data
29

Data Model: Cherenkov PID

CherenkovParticleID datatype

CherenkovPdgHypothesis component: one for each PDG (mass) hypothesis:

TO BE IMPROVED
Opportunity for Synergy!

C. Dilks PID Algorithms & Data
30

Data Model: Cherenkov PID

● One for each radiator (and one for the merged combination)
● All point to the same TrackSegment (as a unique ID)
● This is the “expert-level” PID object, specific for CherenkovPID

Gas Aerogel

C. Dilks PID Algorithms & Data
31

Algorithm: Merging Cherenkov PID Objects

● Simple Particle ID object merging implemented
● Currently handles merging dRICH gas + aerogel
● Could be generalized to merge PID objects from various subsystems

Gas Aerogel

Merged

C. Dilks PID Algorithms & Data
32

Track params MCParticles

Algorithm: Linking to Reconstructed Particles

● Linking PID and reconstructed particles is
(slightly) non-trivial….

● Track projections in dRICH originate from
a non-EDM4hep/eic datatype, therefore
cannot link back to it

● Workaround: proximity matching of the
projected dRICH TrackSegments to the
reconstructed particles (η,ϕ)

● … which is also how track parameters
are matched to MC Particles …

● At this stage, we also build the general-
level PID objects, for non-experts

● We could also merge PID results from
other subsystems

C. Dilks PID Algorithms & Data
33

Data Model: General PID

● “ParticleID” is the main datatype for PID

● Used by many experiments, including ePIC
● This is the “user-level” PID object

● All PID subsystems should produce these objects as the final output

C. Dilks PID Algorithms & Data
34

Data Model: General PID

Example: assume most
likely PID is a pion

Users will typically analyze Reconstructed
Particle objects

They contain links to the ParticleID objects

C. Dilks PID Algorithms & Data
35

Outline

Overview of ePIC Software

Geometry

Reconstruction
– Data Model
– Algorithms

Benchmarks

C. Dilks PID Algorithms & Data
36

Benchmarks

Continuous Integration
– Make a change in geometry or reconstruction, automatically see the

impact everywhere on everything
– Benchmarks: validation, performance plots, anything that tells you

that your subsystem is working as expected
– Critical for stability as we continue to improve detector and

reconstruction design
● And for stability against any change in the ePIC software stack or in any

upstream software (dependencies)

dRICH Benchmarks
– Under development, working well but not yet triggered by upstream
– New paradigm proposal: “Analysis algorithms”: similar to

reconstruction algorithms, these are also as independent as possible
– Synergy: Hopefully general enough to be used by the pfRICH

Simulation

Reconstruction

Benchmarks

Continuous Integration (CI)
Pipeline (simplified)

https://eicweb.phy.anl.gov/EIC/benchmarks

https://eicweb.phy.anl.gov/EIC/benchmarks

C. Dilks PID Algorithms & Data
37

Summary

Synergy

Shared material and
surface properties

Shared common definitions

Try to keep conventions
the same between the
detectors, where applicable
(e.g., dRICH and pfRICH)

Geometry

Synergy:

Datatypes are shared anywhere

Algorithms can also be shared

Let’s work together!

The doors are open for new algorithms, as well as
improvements to current ones

Data model
Reconstruction Algorithms
Benchmark Algorithms

Share bug fixes
Share improvements
Share lessons learned
Share tooling
Avoid duplication of work
Use collaborative tools on Github

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

