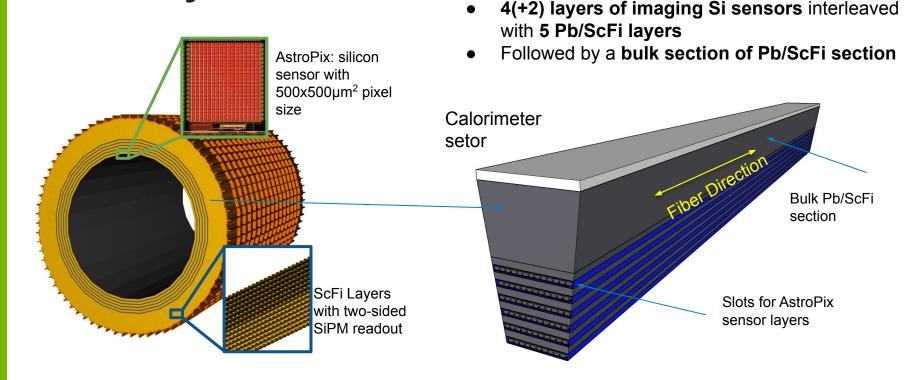
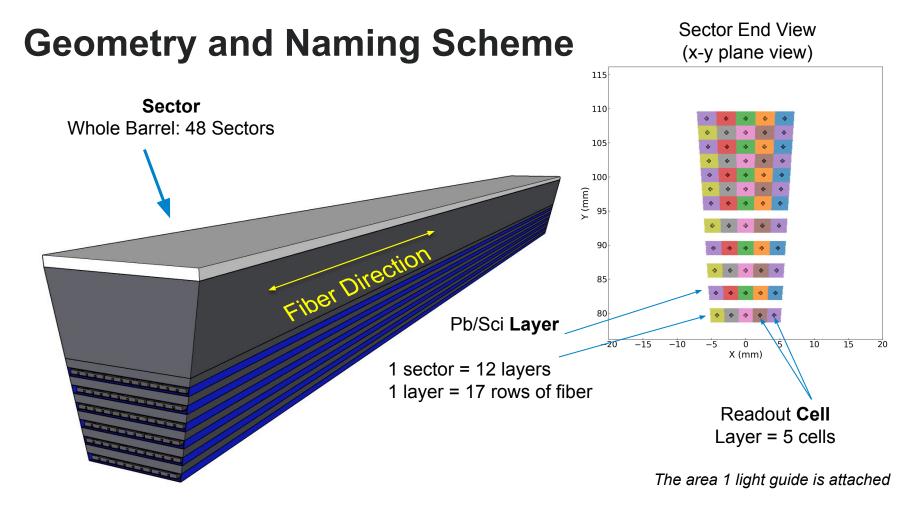
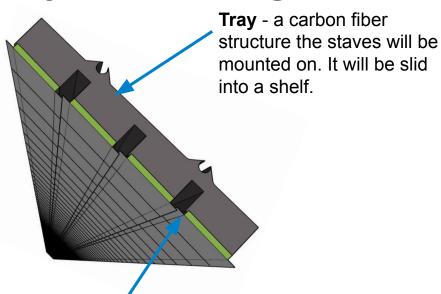
ePIC Barrel ECal Meeting - 06/12-16/23


ePIC Imaging Calorimeter Intro: Facts & Figures

Maria Zurek
Argonne National Laboratory

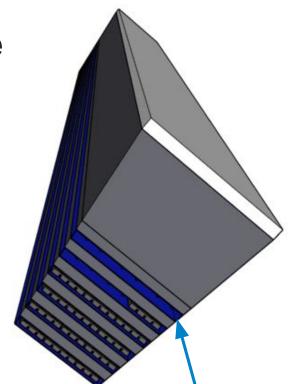


Geometry



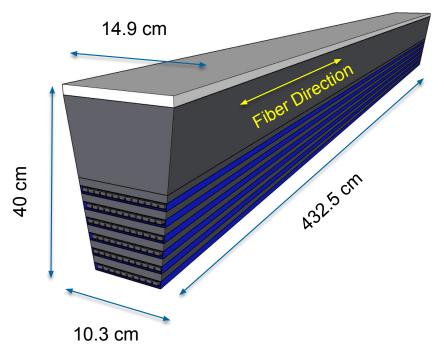
Energy resolution - Primarily from Pb/ScFi layers (+ Imaging pixels energy information)

Position resolution - Primarily from Imaging Layers (+ 2-side Pb/ScFi readout and radial segmentation)



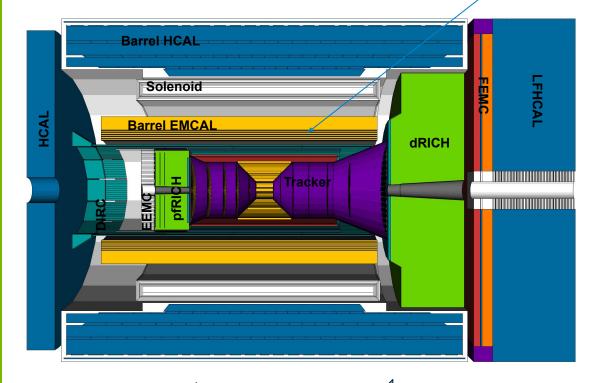
Geometry and Naming Scheme

AstroPix **Stave**Consists of 1 x 108 chips with the support structure


AstroPix **Module**Subset of chips that will be mounted on one stave support structure

Shelf - a carbon fiber structure that is glued to the Pb/ScFi layers, that we will slide trays with AstroPix stayes on.

*The designs presented on these slides are not final but for illustration only


Dimensions

Dimensions a the current stage of the design

inner barrel radius	78.3 cm
nb of sectors	48
length	432.5 cm
AstroPix slot thickness	2 cm
SciFi/Pb Layer 1-5 thickness	2 cm
Total weight	~36 t
1 sector weight	~750 kg

Barrel ECal in ePIC Detector

hadrons

electrons

Tracking:

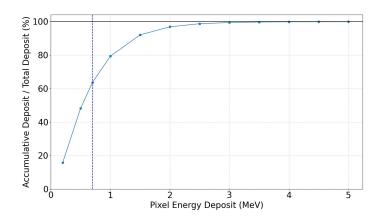
- New 1.7 T solenoid
- Si MAPS Trackers
- MPGD layer before DIRC

Particle ID:

- DIRC
- pfRICH
- dRICH
- AC-LGAD (~30ps TOF)

Calorimetry:

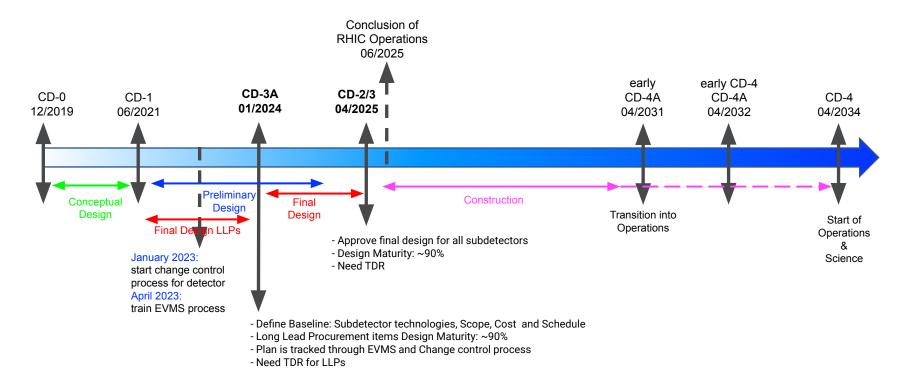
- Si and Pb/ScFi Barrel EMCal
- PbW04 EMCal in backward direction
- Finely segmented EMCal + HCal in forward direction
- Outer HCal (sPHENIX re-use)
- Backwards HCal (tail-catcher)

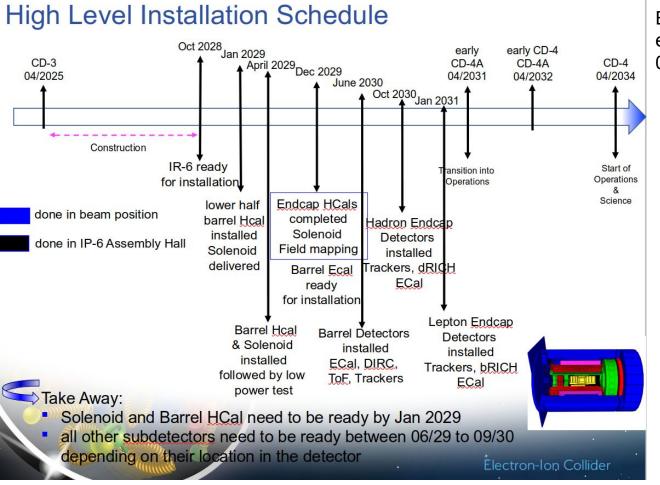

AstroPix for ePIC - Numbers

Estimates based on the current design

shelf number	shelf width [cm]	number of staves	number of chips (108 chips per stave)	number of pixels (40x36 pixels per chip)
1	10.3	12	1296	1.87E+06
2	10.8	-	-	-
3	11.3	12	1296	1.87E+06
4	11.9	12	1296	1.87E+06
5	12.4	-	-	-
6	12.9	14	1512	2.18E+06
	sum per barrel sector:	50	5400	7.78E+06
	sum per barrel:	2400	259200	3.73E+08

AstroPix for ePIC


- Low rates
 - a. The expected hit rate for **all imaging layers** together is well below < 3 x 10⁷ Hz
 - b. This translates to a maximum hit rate per tracker stave (1 x 108 chips) < 36 kHz
- 2. Dynamic range (see plot for 2 GeV electron) ~ 3 MeV
- 3. **Zero suppression threshold of 20 keV** well suited for EIC electromagnetic showers
- 4. Low Ionization radiation dose and neutron flux
 - a. The maximum ionizing radiation dose < 1
 kRad/year for the barrel region
 - b. Max neutron flux is at the order of 10⁹ neutrons/cm² per year
- 5. Timing requirement: 3.125 ns (v4) **driven by 10 ns bunch** crossing



Accumulative energy deposit to the total energy deposit for 2 GeV electrons.

- About 63% of the energy deposit was made through hits with deposit < 700 keV
- hits with deposit < 3 MeV contribute to 99% of the total energy deposit

EIC Project Schedule

E. Aschenauer, R. Ent, ePIC General Meeting, 04/14/23

High Level Schedule

Jul 2023 - Oct 2024: Design

Jan 2024 - Oct 2024: Prototyping/First article (note any beam tests relate to R&D

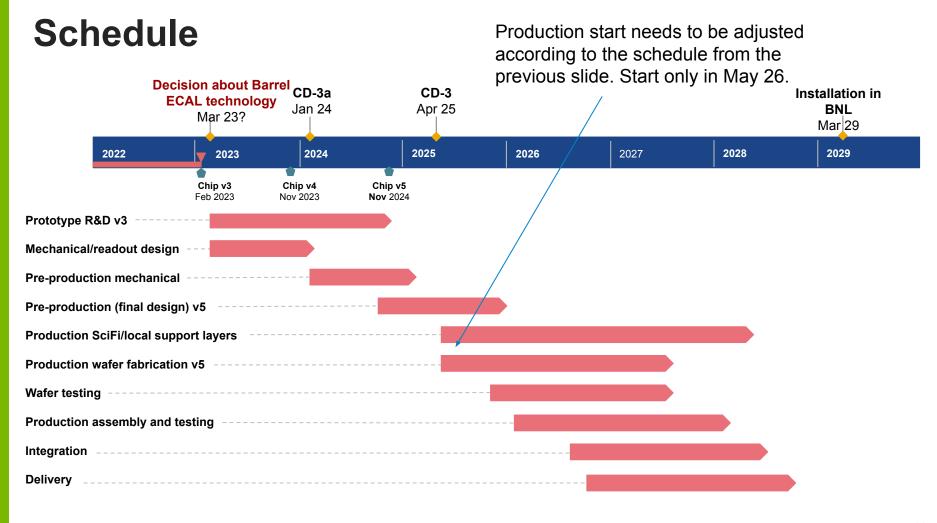
not to EMCal WBS)

Oct 2024 - Oct 2025: Production development

Feb 2025 - Feb 2026: Procurement process

Feb 2026 - May 2029: Contract Award followed by material delivery

May 2026 - Sep 2029: Production for Pb/SciFi and test & assembly for Si, and


ship to BNL

Sep 2029 - Dec 2029: Sector assembly at BNL (light guides, SiPM, etc.)

Dec 2029: Deadline to have all sectors and Si staves ready for integration

Dec 2029 - Feb 2030: Sector assembly in a barrel

Feb 2030 - May 2030: Insert/integrate Si staves

Backup

Daisy-chain throughput does not lead to dropped hits: method

Specs:

- One silicon stave is 108 Astropix sensors daisy-chained together, which measures 2 cm x 216 cm (one chip x half calorimeter length).
- Each Astropix sensor has 1360 pixels. The on-chip buffer has the same size as the number of pixels.
- It takes ~ 1 μs to push a hit from the Astropix chip to the periphery. The hit will go onto the hit buffer of the adjacent chip, taking 1 μs hops until it reaches the data aggregator at the end of the chain

Question: Is there any risk for dropped hits due to traffic jams in the daisy chain?

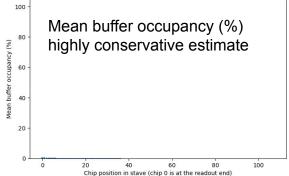
Method:

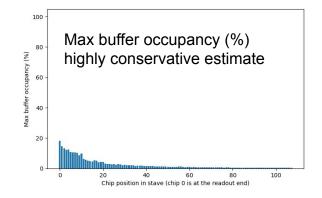
- Simulate the daisy chain for an *absurdly* high upper limit to show there are no issues (we do not have holistic full background+physics simulations available right now). If it works in this upper limit it will not be an issue for realistic operation.
 - Overestimate 1: The expected hit rate for all imaging layers together is well below < 3 x 10⁷ Hz based on physics + background simulations done with an energy threshold of 0.4keV (correct threshold is 20keV so likely 1 or more orders of magnitude too large).
 - Overestimate 2: This corresponds to a raw hit rate of <36kHz per stave (high occupancy staves), let's assume this is not the hit rate but rather the event rate.
 - Overestimate 3: Let's assume every one of these events is a highest occupancy event (max occupancy/stave is <25hits/stave, which we found in the Pythia8 NC Q² > 1000 GeV² samples).
 - Hence: highly conservative (unrealistically high) upper limit would be an event rate of 36kHz per stave with a multiplicity of 25 hits/stave. This is what we simulated.*

^{*} Note that the numbers we are simulating corresponds to a hit rate of 900kHz per stave, which is a dramatic overestimate.

Daisy-chain throughput does not lead to dropped hits: Results

Highly conservative (unrealistically high) upper limit would be an event rate of 36kHz per stave with a multiplicity of 25 hits/stave. This corresponds to assuming every hit is really an outlier high-multiplicity event. This is what we simulated.

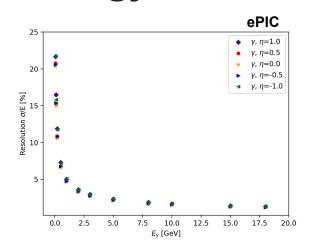

We ran the simulation until the results stabilized.

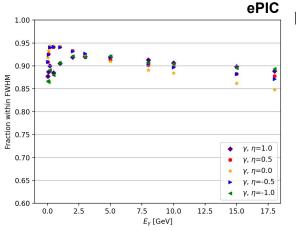

The mean buffer occupancy is very low.

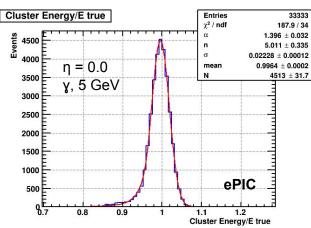
The maximum buffer occupancy (highest-seen buffer usage for each of the chips) increases as we go towards the readout end of the daisy chain.

In this upper limit scenario, we never exceeded 20% buffer occupancy and **never dropped a hit**.

Realistic estimates will be orders of magnitude lower.

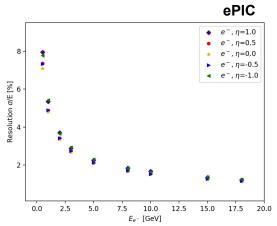

Project Schedule

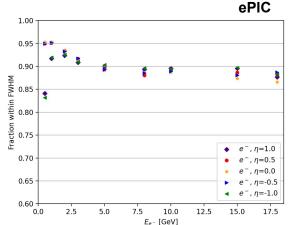

E. Aschenauer, R. Ent, ePIC General Meeting, 05/11/23

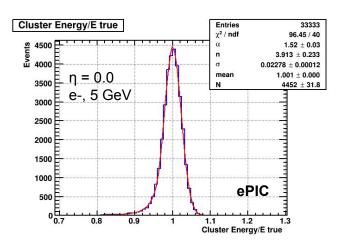

•	DOE OPA Status Review	October 19-21, 2021(A)
•	FPD Status Update at BNL	June 28, 29, 30 2022(A)
	Technical, Cost, and Schedule Scrutiny Meeting	July - Sept 2022 (A)
•	Project, Detector & Infrastructure Advisory Meeting	October 2022(A)
•	DOE OPA Status Review	Jan. 31-Feb 2, 2023(A)
•	Project Advisory Meeting	February 22, 23 2023(A)
•	Infrastructure Advisory Meeting	March 22, 23 2023(A)
•	1* RRB Meeting	April 4,5 2023 (A)
•	Begin LLP EVMS (practice 3 months data)	July 2023
	Begin LLP EVMS (practice 3 months data) CD-3A Director's Review (Co-Chaired by M. Reichanadter / S. Cousineau)	July 2023 October 10-12, 2023
		,
	CD-3A Director's Review (Co-Chaired by M. Reichanadter / S. Cousineau) DOE CD 3A OPA Review	October 10-12, 2023
	CD-3A Director's Review (Co-Chaired by M. Reichanadter / S. Cousineau) DOE CD 3A OPA Review	October 10-12, 2023 November 2023
	CD-3A Director's Review (Co-Chaired by M. Reichanadter / S. Cousineau) DOE CD 3A OPA Review DOE CD 3A ESAAB Approval	October 10-12, 2023 November 2023 January 2024
	CD-3A Director's Review (Co-Chaired by M. Reichanadter / S. Cousineau) DOE CD 3A OPA Review DOE CD 3A ESAAB Approval Final Design Reviews for all ePIC subsystems DOE CD 2/3 OPA Review and ICR	October 10-12, 2023 November 2023 January 2024 April - October 2024

Energy Resolution - Photons

Fit parameters


η	a/√(E) [%]	b [%] 0.47(0.03)	
-1	5.1(0.01)		
-0.5	4.77(0.01)	0.38(0.02) 0.40(0.02)	
0	4.67(0.01)		
0.5	4.75(0.01)	0.39(0.02)	
1	5.1(0.01)	0.41(0.02)	


- Based of Pb/ScFi part of the calorimeter
- Resolution extracted from a Crystal Ball fit σ

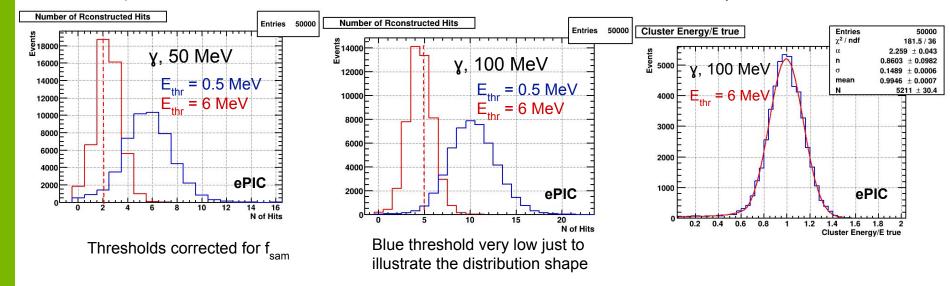

GlueX Pb/ScFi ECal: $\sigma = 5.2\% / \sqrt{E} \oplus 3.6\% \text{ NIM}, A 896 (2018) 24-42$

- 15.5 X_0 , extracted for integrated range over the angular distributions for π^0 and η production at GlueX ($E_x = 0.5 2.5$ GeV)
- Measured energies not able to fully constrain the constant term Simulations of **GlueX prototype** in ePIC environment agree with data at E $_{\tau}$ < 0.5 NIM, 596 (2008) 327–337

Energy Resolution - Electrons

Fit parameters

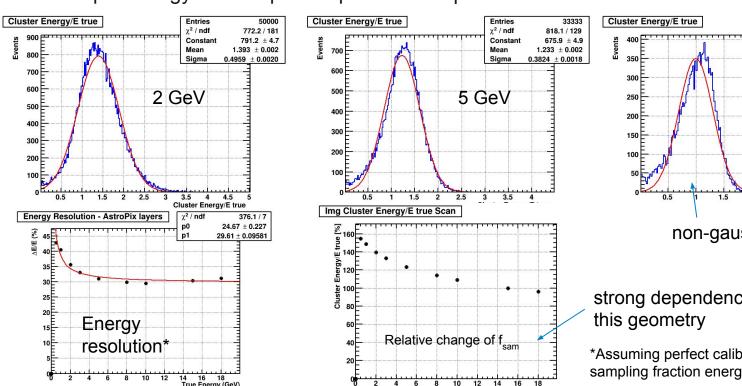
η	a/√(E) [%]	b [%]	
-1	5.22(0.02)	0(0.08)	
-0.5	4.88(0.01)	0(0.04)	
0	4.81(0.01)	0(0.08)	
0.5	4.88(0.01)	0(0.04)	
1	5.19(0.01)	0(0.06)	

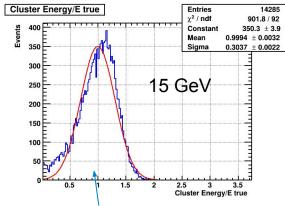

Resolution extracted from a crystal ball fit σ

GlueX Pb/ScFi ECal: $\sigma = 5.2\% / \sqrt{E} \oplus 3.6\% \text{ NIM}, A 896 (2018) 24-42$

- 15.5 X_0 , extracted for integrated range over the angular distributions for π^0 and η production at GlueX ($E_x = 0.5 2.5 \text{ GeV}$)
- Measured energies not able to fully constrain the constant term Simulations of **GlueX prototype** in ePIC environment agree with data at E $_{\tau}$ < 0.5 NIM, 596 (2008) 327–337

Low Energy Particles


- For electrons: cut out because of the 1.7 T field to reach the calorimeter (p < ~408 MeV)
- For photons shown number of fired readout cells with different thresholds at $\eta = 0$


• From GlueX studies: cluster/shower threshold is 100 MeV nominal (down to 50 MeV for some analyses, with mostly two cells per event only). Low energy detection threshold studied also with Michel electrons. (NIM, A 896 (2018) 24-42)

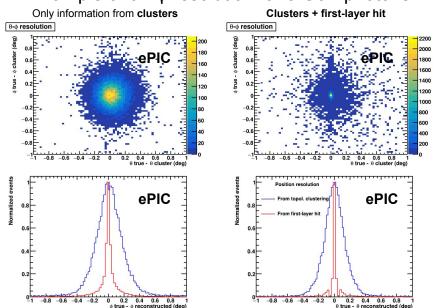
Energy resolution of AstroPix Layers

- Sampling fraction < 0.5 %
- Example Energy Lineshapes for photons at $\eta = 0$

with 6 AstroPix Layers

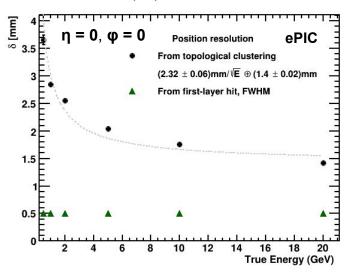
non-gaussian

strong dependence in


*Assuming perfect calibration (but! huge sampling fraction energy dependence)

Performance

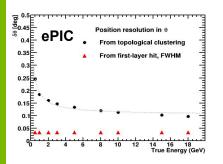
True Energy [GeV]

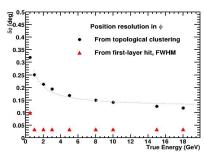

Position Resolution

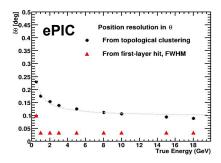
Example of θ - ϕ resolution for 5 GeV photons

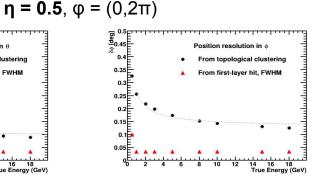
with 6 AstroPix Layers

Position resolution for photons Particles thrown perpendicular to the calo surface

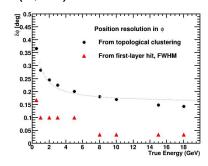

- Clusters from Imaging Si layers reconstructed with 3D topological algorithm
- Cluster level information: $\sigma_{\text{position}} = (2.32 \pm 0.06) \text{ mm/}\sqrt{\text{E}} \oplus (1.4 \pm 0.02) \text{ mm at } \eta = 0$ First-layer hit information added: $\sigma_{\text{position}} = \sim 0.5 \text{ mm (pixel size)}$


Position resolution studies

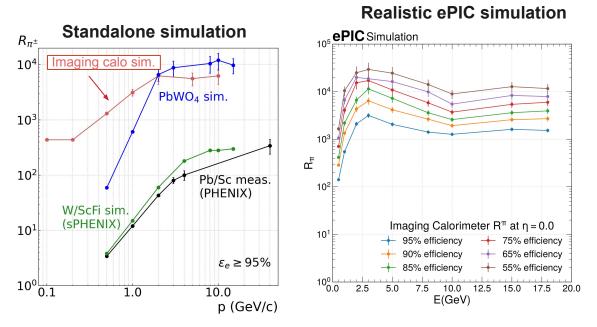

with 6 AstroPix Layers


Angular resolution for different η

$$\eta = 0$$
, $\phi = (0.2\pi)$



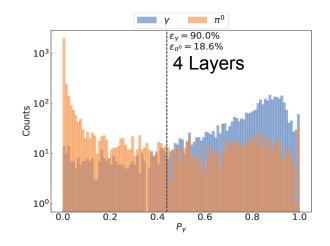
$$\eta = 1, \varphi = (0,2\pi)$$



- Small dependence seen with changing η
- Angular resolution in all regions well below 0.1 deg (in majority regions on the level of single pixel resolution)
- Results well below any tower-like calorimetry

Electron Identification

with 6 AstroPix Layers

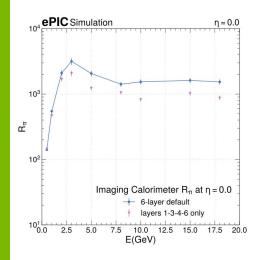

- Goal: Separation of electrons from background in Deep Inelastic Scattering (DIS) processes
- Method: E/p cut (Pb/ScFi) + Neural Network using 3D position and energy info from imaging layers
- e-π separation exceeds 10³ in pion suppression at 95% efficiency above 1 GeV in realistic conditions!

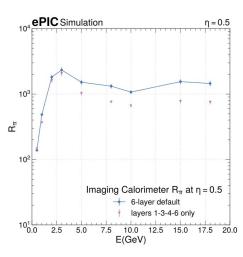
Performance

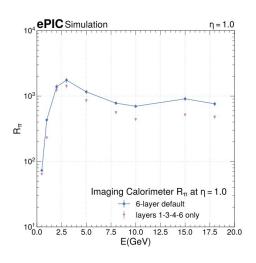
24

Performance with reduced number of layers γ/π⁰ separation

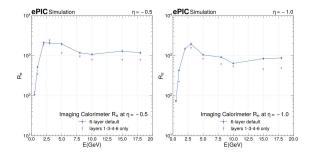
Momentum	Configuration	γ efficiency	πº rejection
10 GeV/c	6-layer default	90%	11.5
10 GeV/c	4-layer alternate	90%	5.4

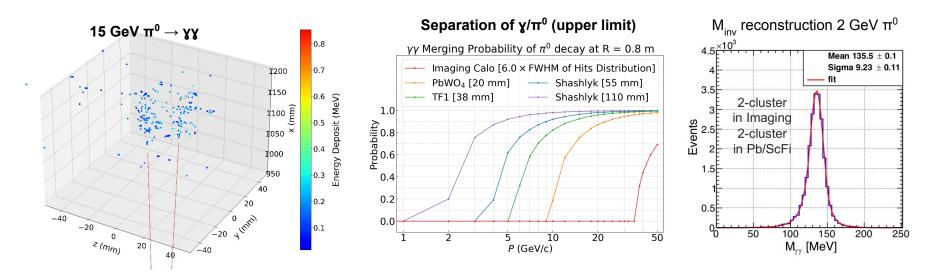



Significant reduction in π^0 rejection at larger energies when reducing the number of layers (where π^0 rejection is the hardest).


4-layer configuration, sees a reduction in π^0 rejection at high energies by a factor of 2.

4-layer alternate is workable (still better than theoretical limit on a crystal calorimeter!), but significantly reduced π^0 performance versus the default 6-layer configuration.


Performance with reduced number of layers e/π separation at 95% efficiency


4-layer alternate: layers 1-3-4-6

Default configuration exceeds 10³ pion rejection almost everywhere **4-layer alternate** still performs relatively well at lower energies (where most rejection is needed), larger degradation at higher energies

4-layer alternate seems workable compromise.

Neutral Pion Identification

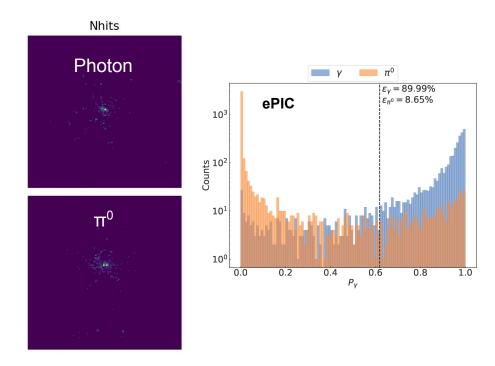
- Goal: Discriminate between π^0 decays and single γ from DVCS, neutral pion identification
- Precise position resolution allow for excellent separation of γ/π^0 based on the 3D shower profile
- Reconstruction of 2 GeV π^0 invariant mass as a testing ground for cluster energy splitting

Separation of two gammas from neutral pion well above required 10 GeV

γ/π⁰ Separation - Exploratory Studies

Convolutional neural network utilizing energy and spatial information from AstroPix layers

• Started from 10 GeV/c at $\eta = 0$ - the upper limit for γ/π^0 from YR


No proper **topological clustering algorithm** in the ePIC reconstruction yet

With a quick study we easily achieved

10 GeV/c particles - 91.4% rejection of π^0 at 90% efficiency of γ (better than PbWO₄ crystal with 20mm block size)

Full study is ongoing:

- Implementing optimized topological clustering for AstroPix layers
- Significant improvements expected

