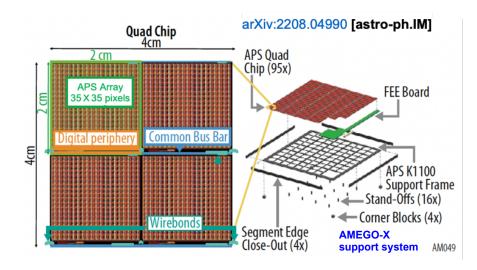
Barrel Imaging Calorimeter Meeting June 12-16, 2023

AstroPix Test Results at ANL

Manoj Jadhav Argonne National Laboratory

Jun 16, 2023

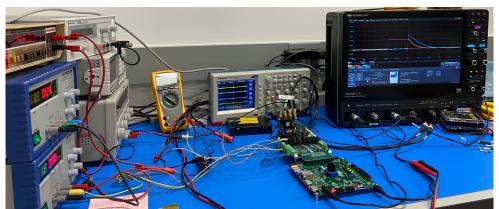

AstroPix

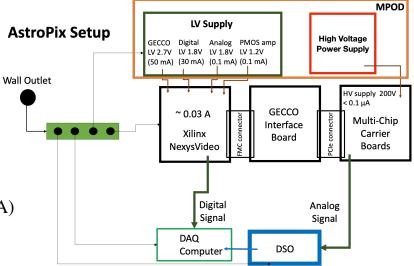
Imaging layers based on AstroPix sensors

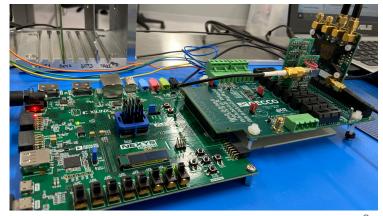
- 180nm HV-CMOS MAPS sensor
- Developed for AMEGOX NASA mission
- Based on ATLASpix3 arXiv:2109.13409 [astro-ph.IM]

Key features:

- Very low power dissipation < 1.5 mW/cm²
- The good energy resolution (<10% @ 60 keV)
- 500 μm X 500 μm pixel size
- Sensor thickness of 700 μm
- Time resolution ~ 3.25 ns (V4)

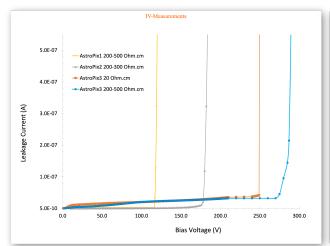


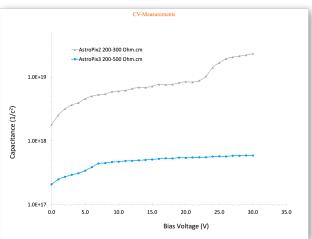

Testbeam Goal

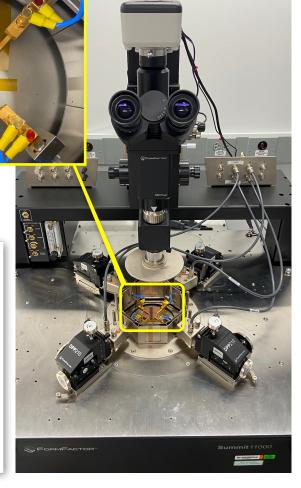

- Assess the feasibility of AstroPix sensor in testbeam environment for tracking performance.
- Testing AstroPix sensor for an imaging electromagnetic calorimeter environment.
 - Is the chip readout scheme optimal for calorimetry? → Tests of chip responses to electromagnetic and hadronic showers in the beam environment
 - How radiation hard is the chip? → Irradiation tests in a high-intensity proton beam

AstroPix Setup

- AstroPix version tested 1 to 3
- NexysVideo FPGA (Xilinx Artrix-7), GECCO
 - Vivado Design Suite HLx to program chip
 - Analog (DSO) and Digital data acquisition
- $V_{BD} = ~180 \text{V (for v2)} \text{ and } ~> 250 \text{V (for v3)}$
- LV supply
 - Digital 1.8V ($\sim 30 \text{ mA}$) and Analog 1.8V ($\sim 0.1 \text{ mA}$)
 - **❖** GECCO 2.7V (~50 mA) and
 - ♦ for v3: PMOS amplifier 1.2V (~ 0.1 mA)

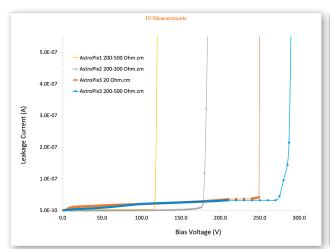


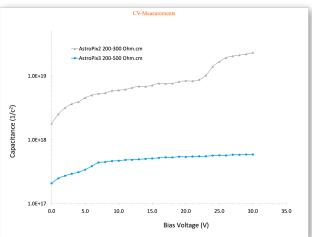




AstroPix Characterization

- IV and CV measurements
- FormFactor Summit 11000
 - Keithley 2400 SCS and CAEN DT1471ET
- high breakdown voltage
- ❖ Leakage current < 40 nA, Capacitance ~ 1 nF</p>
- * Edge-Transient Current Techniques (TCT) measurements under investigation
 - Depletion Depth and charge sharing





AstroPix Characterization

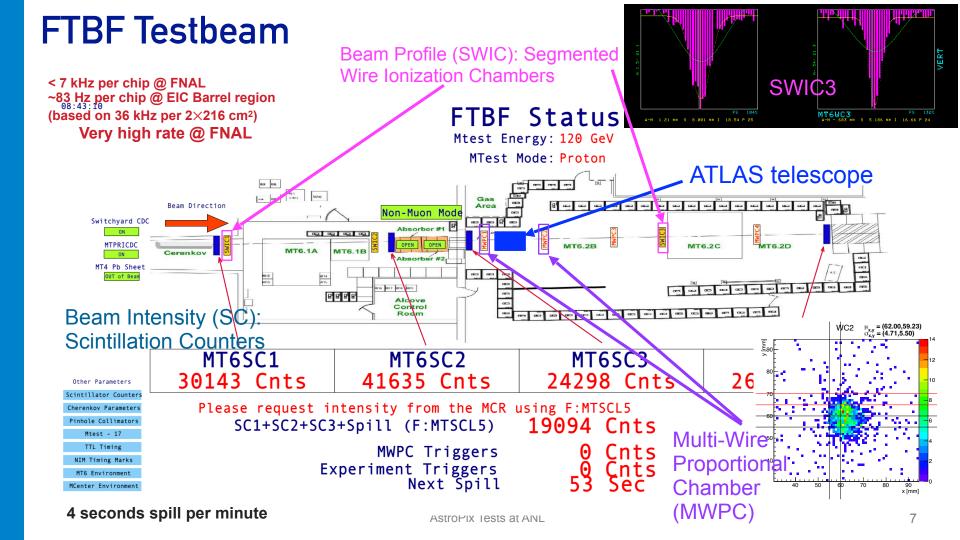
- IV and CV measurements
- FormFactor Summit 11000
 - ❖ Keithley 2400 SCS and CAEN DT1471ET
- high breakdown voltage
- ❖ Leakage current < 40 nA, Capacitance ~ 1 nF</p>
- * Edge-Transient Current Techniques (TCT) measurements under investigation
 - Depletion Depth and charge sharing

Imaging layers R&D

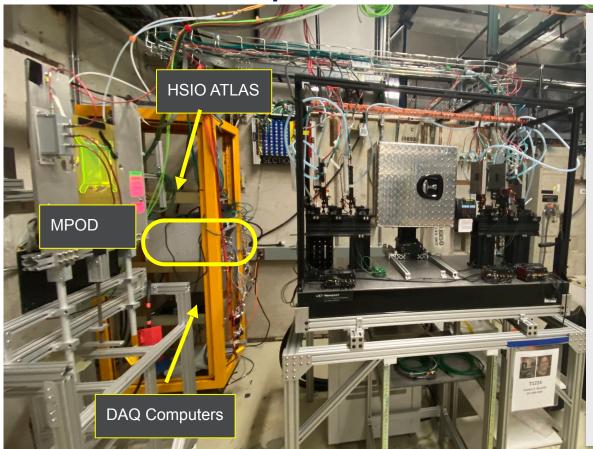
AstroPix sensor validation testing

- Bench tests with **AstroPix v2**
 - Energy resolution studies
 - Noise measurements
 - Digital data acquisition
 - Sensor characterisation (IV, edge-TCT, depletion depth)

• Testbeam campaign at Fermilab FTBF

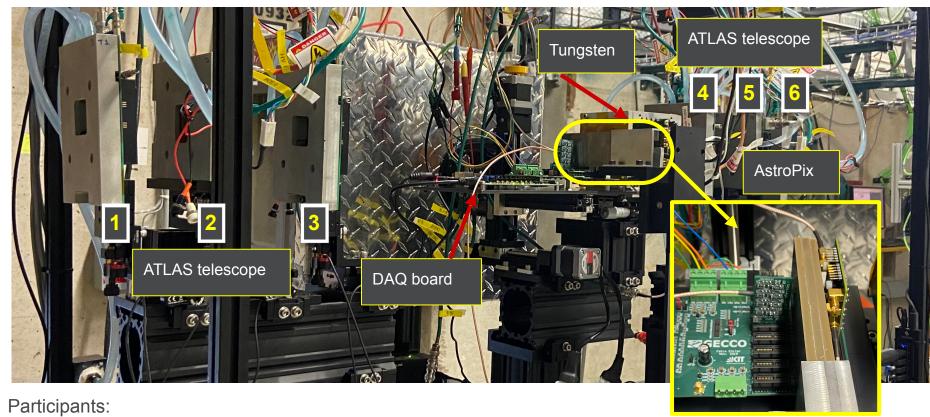

- o Feb&Apr 2023 v2 testing; May 2023 v3 testing
- Validate detector performance at **120 GeV proton** beam
- Intergration of AstroPix with ATLAS telescope
- AstroPix telescope tracker (4 layers of AstroPix)
- **Feasibility with Calorimeter environment** with **pions/electron beam** at FTBF with tungsten radiator, readout aspects (ANL LDRD grant)

• Irradiation test


- 400 MeV proton (minimum 4.5E12 protons/min) at the FNAL ITA Facility
- Latch-up tests by NASA with heavy ions (from Argon to Xenon with an atomic tune of 16 MeV/a.m.u.) at LBNL (BASE) No Latch-up at 65 LET

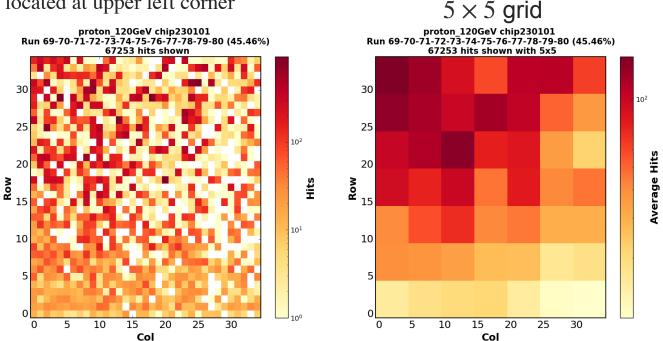
AstroPix Tests at ANL

6

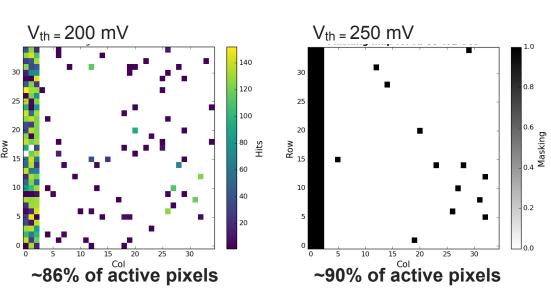


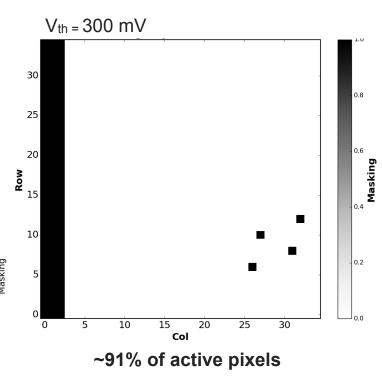
AstroPix FTBF Setup

- Technical Scope of Work here
- * How to Create here
- * TSW- 1224
- ATLAS Pixel
 - Jessica Metcalfe
- Section 6.2A
- 6 ATLAS FEI4 telescope planes
- ♦ DUT cold box (-30 °C)
- Breadboard 48" x 24"
- AstroPix is placed in center (cold box pushed back)


AstroPix FTBF Setup

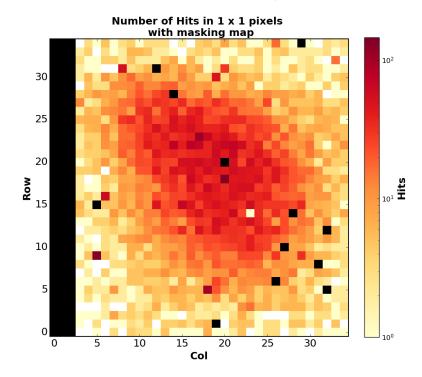
Jihee Kim, Doyeon Kim, Maria Zurek, Manoj Jadhav, Jungi Xie, Jessica Metcalfe 2022@ Ricardo Lutz, Amanda Steinhebel AstroPix Tests at ANL


- Beam position information
 - Started with v2 chip testing in 2022
 - AstroPix v2 chip was tested during Feb 2023 and Apr 2023
 - high threshold at 400 mV, masked pixels as white blocks, Total 85 % active pixels


• Beam is located at upper left corner

APS3-W2-S03 - noise scan

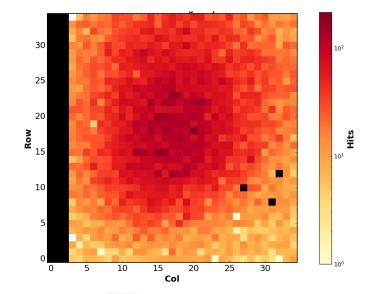
- Time window: 5 secs
- First 3 columns masked, Reduced masked pixels from v2 to v3
- Selected higher threshold for MIPs
 - Maximum number of active pixels
 - Reduce the rate of hits

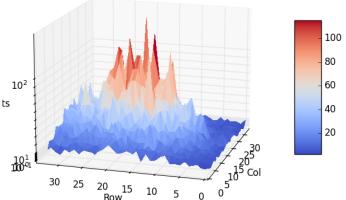

11

APS3-W2-S03 - 120 GeV Proton

- 120 GeV Proton
 - 20000 protons/spill
 - $-4.6 \text{ mm} \times 5.4 \text{ mm}$
- Data acquisition
 - Total 3 hours
 - 250 mV threshold
 - HV bias voltage 150 V
- Total 16,629 raw events
 - 63.28 % of events were decodable
 - 15,339 hits* were fired
 - Among 90.37 % of active pixels, 86.94 % of pixels
 were fired

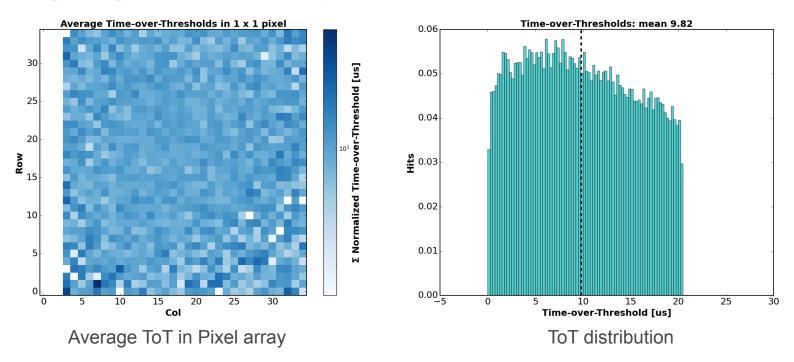
*Matching hits with exact time timestamp + ToT difference < 0.5 us


With narrow beam configuration



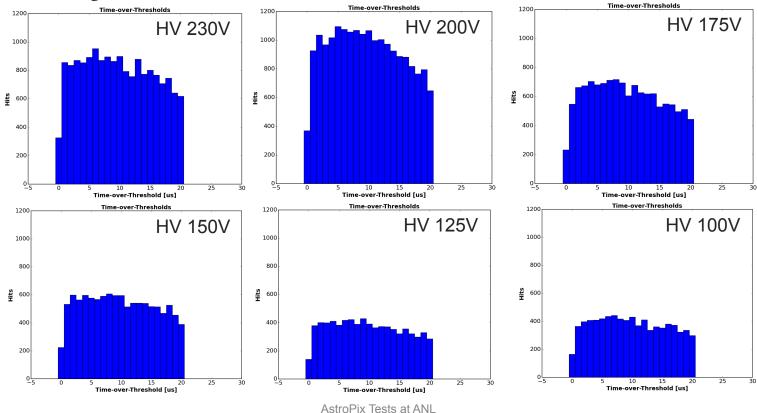
APS3-W2-S03 - 120 GeV Proton

- 120 GeV Proton
 - 5000 protons/spill
 - $-4.7 \text{ mm} \times 4.8 \text{ mm}$
- Data acquisition
 - Total 8 hours
 - 300 mV threshold
 - HV bias voltage 150 V
- Total 37,472 raw events
 - 96.67 % of events were decodable
 - 44,742 hits* were fired
 - Among 91.1 % of active pixels, 91.02 % of pixels were fired


*Matching hits with exact time timestamp + ToT matching

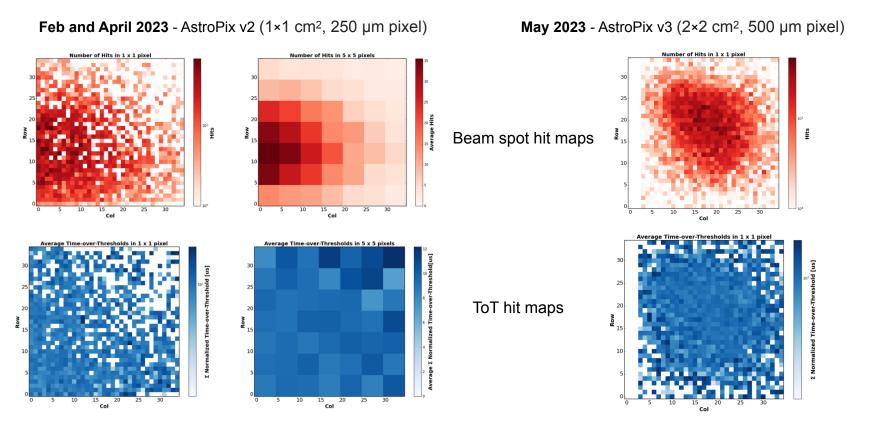
APS3-W2-S03 - 120 GeV Proton

Uniform pixel response for Minimum Ionizing Particle


APS3-W2-S03 - Voltage Bias Scan

• 2 hours data-taking each scan

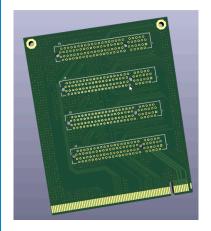
HV Bias Voltage [V]	I _{measured} [nA]	Number of events (decodable [%])
230 V run# 74	52.8 nA	20,321 (51.74 %)
200 V run# 75	43.4 nA	14,669 (92.66 %)
175 V run# 76	41.9 nA	10,314 (97.54 %)
150 V run# 70	37.5 nA	9,206 (96.97 %)
125 V run# 77	34.0 nA	6,867 (98.97 %)
100 V run# 78	35.5 nA	7,028 (98.99 %)


APS3-W2-S03 - Voltage Bias Scan

• 2 hours data-taking each scan

AstroPix FTBF

AstroPix v2 and v3 - 120 GeV Proton

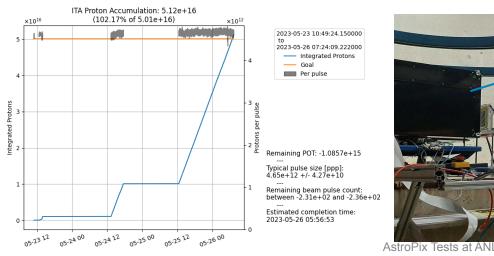


AstroPix FTBF - In Progress


- Goal
 - Trigger integration with ATLAS
 - Multilayer tracker
- Test-beam Campaign
 - Benchmark multi-layer tracker telescope
 - Multi-layer adaptor PCB <u>link</u>
 - External trigger card <u>link</u>
 - Firmware update onging

Irradiations Studies

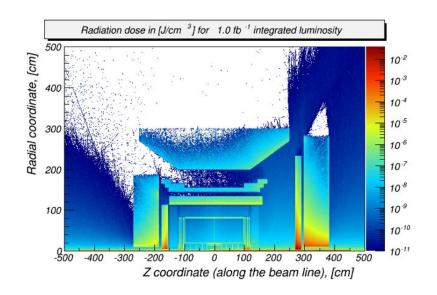
- IV and CV measurements performed for the v2/v3 chips before irradiations
 - Same measurements will be repeated post irradiation
- 9 v2 & 6 v3 chips irradiated for Passive Irradiation (Al-foil dosimetry)
- Active Irradiation for Latch-up (and SEE) is planned week of 26th May

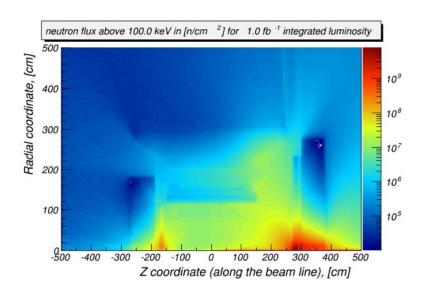

V2 Irradiation

Nb of samples	Doses (400 MeV protons)
3	4.50E+13
3	1.08E+15
2	1.01E+16
1	5.02E+16

V3 Irradiation (low and high ResChips)

Nb of samples	Doses (400 MeV protons)
2	4.50E+13
1	5.04E+15


Summary


- 1. AstroPix chip performance studies with test beam
 - 1. DAQ with different triggering schemes, a benchmark set for the test with v3 chip
 - 2. Initial data obtained with single layer setup with and without W-radiator, in self-triggering streaming data mode
 - 3. Multilayer AstroPix standalone telescope with radiator layer
 - 4. External trigger from existing ATLAS telescope to study tracking efficiency, position resolution, etc.
 - 5. External trigger and multilayer readouts are being currently tested at FNAL MTest Facility
- 2. Irradiation test with v2 and v3 chips, irradiation plan tested
 - 1. v2 chip pre-irrad characterization and Irradiation performed at different radiation doses 🗸
 - 2. Irradiation beam test Ongoing at FNAL MTA Facility
 - 1. Passive Irradiation of v2 chips is completed, v3 chip will be irradiated this week
 - 2. Active Irradiation of the v3 chip will be performed in the coming weeks

Backup

21

Ionization radiation and neutron flux

- Maximum ionizing radiation dose from e+p collisions at the highest EIC luminosity (10³⁴cm⁻²s⁻¹): ~1 Rad/year
- Neutron flux: 108 neutrons/cm² per year at the top luminosity (two order of magnitude lower than the near-beam-line detectors)

