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▪ Applications of electron sources in particle accelerators

– High Energy Physics

– Nuclear Physics

– Light Sources

▪ The architecture of electron sources

– Guns

– Cathodes

– Injectors

▪ Roadmap for electron source development

Outline
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Electrons are widely used for different types of accelerators. In this presentation 
we will focus on electron injectors used in the following three areas of applications:

▪ Electron-Positron Colliders: High luminosity requires

– Flat beam w/ small vertical emittance on nm level, and high average current

▪ Advanced accelerators

– Sources matched to high-frequency acceleration (optical, THz)

– Sources to produce "drive" bunch (high charge + shaped) for beam-driven wakefield 

acceleration in structures or plasmas.

▪ Accelerator-based light sources

– Main driver for photoinjectors R&D over the last several decades

– Photoinjectors for linac-based free electron lasers

– High average current DC guns for ERLs

Applications of electron sources in particle accelerators

Photocathode Physics for Photoinjectors Workshop          Yine Sun            10/3/2023 5



Electron Sources for High Energy Physics/Nuclear Physics

⚫ Main beam injector (high brightness): provide a few hundreds of μA of polarized electrons such 

as in ILC, SuperKEKB etc [1]; 10s of mA for LHC -- beyond current state of art. 

⚫ Accelerate the gun beam until it is no longer space-charge dominated (typically 100 MeV) and inject 

into the main accelerator.  Injector must not increase the emittance generated by cathode and gun.

⚫ Drive beam injector (High-charge bunch trains): used for beam-driven wakefield acceleration

⚫ Secondary beam injector (e.g. e- beam to e+ beam, as baseline for KEK ILC e+) 

⚫ 10s of mA spin polarized electrons are needed to generate μA of polarized positrons

⚫ Electron cooling injector (High-current) for hadron cooling [2]

 

There are several types of photoinjectors for different purposes:
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[1] Luca Cultrera, Spin polarized electron beams production beyond III-V semiconductors, https://arxiv.org/abs/2206.15345

[2] Xiaofeng Gu, this workshop.

https://arxiv.org/abs/2206.15345


An Example of Electron Sources For Colliders
▪ Compact Linear Collider (CLIC) Electron Beam [1]

– Main beam: electrons need to be spin-polarized (>80%)

• DC photoinjectors with GaAs cathode using polarized drive laser; 

– Drive beam: DC thermionic or rf photocathode gun

[1] A. Latina, “Electron Source Requirements for Electron Colliders”, Snowmass2021 Electron Source Workshop, 2/16/2022, https://indico.fnal.gov/event/46053/

[2] F. Zhou, A. Brachmann, T. Maruyama, and J. C. Sheppard, “Polarized photocathode  R&D for future linear colliders”, AIP Conference Proceedings, vol. 1149, no. 1, pp. 992–996, 2009, SLAC-PUB-13514.

[3] O. Mete et al, “Production of long bunch trains with 4.5  μC total charge using a photoinjector”, Phys. Rev. ST Accel. Beams 15, 022803

[2] CLIC  Main beam electron source

CTF3 PHIN gun for drive-beam

3GHz gun, Cs2Te cathode,

1908 bunches 2.33 nC/bunch

bunch frequency of 1.5 GHz.

total charge of ∼4.4  μC

[3]
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[1]

Electron Sources for Advanced Accelerators

▪ Small beam size over a longer distance (i.e. small beam emittance) will allow 

stronger interaction of electron beam. 

– Dielectric laser accelerator[1]: hundred of nm aperture size and hundreds of μm long 

structures, only 2.2% transmission (~11fC charge transmitted

     for an initial beam with 5 pC, 16x7 μm emittance,

    24 keV energy spread and 60 MeV beam  

– structure-based wakefield acceleration

• Corrugated waveguides [2]: 2-mm ID, 10-cm long

▪ Nano tips

– ~10s pm emittance
2 μm

[2]
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[1] E. A. Peralta et al, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, pages 91–94 (2013), https://doi.org/10.1038/nature12664

[2] A. Siy et al, “Fabrication and testing of corrugated waveguides for a collinear wakefield accelerator,” Phys. Rev. Accel. Beams 25, 021302 – Published 17 February 2022

https://doi.org/10.1038/nature12664


Electron Sources for Advanced Accelerators

▪ Beam-Driven plasma accelerator:

– Drive beam: synergy with injectors for light sources

– Witness beam: uniform acceleration can be achieved via precise bunch current profile 

shaping 

– Examples:

• FlashForward:  FLASH FEL gun, 1.3GHz with Cs2TE cathode

• FACET: LCLS gun, 2.856GHz with copper cathode, up to 3nC, with a few μm emittance. Bunch is 

compressed to achieve high peak charge (up to 10kA). 

▪ Laser plasma [1]

– Self-produced.

2 μm
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[1] Carl Schroeder, Plasma Photocathode Injectors, Snowmass2021 Electron Source workshop, 2/2021, https://indico.fnal.gov/event/46053/

. 



Electron Sources for Light Sources

▪ Photoinjectors are commonly used in FELs

▪ Strategies to produce the required brightness:

– Produce low peak current beam with ultra-low emittance

(implement laser shaping, emittance compensation, mitigation of 

field asymmetries,…)

– Accelerate beam to 100's MeV

– Correct for nonlinearities (e.g. high-order accelerating cavities)

– Control longitudinal emittance (laser heater to suppress microbunching instability)

– Compress the beam to enhance the peak current (usually in a staged-compression scheme)

2 μm
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[Courtesy M. Krassilnikov DESY]

[ F. Zhou, et al. LCLS-II INJECTOR 

PHYSICS DESIGN AND BEAM 

TUNING, SLAC-PUB-17124 ]



Examples of Electron Sources for Light Sources

▪ LCLS-I injector [1]

– S-band NCRF Gun, 1.6-cell

– 6 MeV gun beam energy 115 MV/m on 

cathode, 135 MeV injector

– Emittance < 0.6 μm

– Copper cathode, 250 pC bunch charge at 

120 Hz rep rate

▪ Development over the years [2,3]:

– Cathode cleaning for QE improvement 10-4

– Transverse drive-laser profile shaping to 

improve emittance

– Correction of higher order E&M field.
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Dowell et al, PRAB 2008

[2] Zhou et al., PRST-AB 15, 090703 (2012)

 

[1] F. Zhou, Snowmass2021 Electron Source workshop, 2/2022. 

[3] Dowell, Zhou, and Schmerge, PRAB 21. 010101 (2018)



Examples of Electron Sources for Light Sources
▪ LCLS-II injector [1]

– 186 MHz NCRF CW gun   

– 1.3 GHz NC buncher + 1.3 GHz SCRF 

     accelerating structures

– Cs2Te cathode, 1μm/mm intrinsic emittance

– 5-10% QE, QE lifetime 2-3 weeks for 1MHz operation

– 50 W IR laser conversion to UV

– Development

• Dark current collimation

• New gun with lower field emission

– Supported first lasing of LCLS-II!

▪ LCLS-II-HE low emittance injector– SCRF gun R&D [2,3]
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[1] F. Zhou, Snowmass2021 Electron Source workshop, 2/2022, https://indico.fnal.gov/event/46053/. 

[2] J. Lewellen et al, https://accelconf.web.cern.ch/napac2022/papers/wepa03.pdf, NAPAC2022.

[3] S. H. Kim et al. https://accelconf.web.cern.ch/napac2022/papers/mopa85.pdf, NAPAC2022.

RF gun energy  750keV

Injector energy >95 MeV

RF CW

Repetition rate 1 MHz

Emittance (100 pC) 0.4 m 

Rms Bunch length 1mm

Peak current >10 A
F Zhou, PRAB 2021



The important parameters of electron sources

▪ The electron source determines many essential beam characteristics which can be a make-or-

break point for their applications, such as spin-polarization, lifetime of the photocathode etc.

▪ Many applications of electron beams relate to the notion of brightness:

– In a linear accelerator, the electron source sets the limit of the smallest phase-space volume that can be 

ultimately achieved for a given amount of charge.

– In an accelerator ring, damping effects can “cool” the phase-space, however small phase-space at the 

electron source mitigates injection losses or enable compact injection scheme.

– Bunch charge, in the case of photoinjectors, is strongly related to the photocathode quantum efficiency and 

photocathode drive-laser power.

bunch charge

phase-space volume
ℬ =

𝑄

𝑉
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The architecture of electron sources

▪ An electron source consists of

− An electron emission material: photocathode + photocathode drive-laser system,  thermionic cathode, 

field emitters…

− An electron extraction E&M field: Direct Current (DC) gun, Normal Conducting Radio-Frequency (NCRF) 

gun, or Superconducting Radio-Frequency (SRF) gun

− A beam acceleration/manipulation section to:

⚫ Implement emittance compensation [e.g. solenoid]

⚫ Provide phase-space control [e.g. bunching cavity]

▪ The type of source generally:

− Dictate the design of the upstream region (acceleration 

to ~100 MeV)

− Impact the photocathode choice (and thus the final 

brightness, and ability to deliver spin-polarized beams)
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Roadmap for DC Guns

▪ DC guns have best vacuum (better than 10-11 Torr) for GaAs photocathodes and generate highest 

CW current

▪ Application to HEP– Linear collider polarized DC e-gun, polarized positron beam generation, 

synergies with NP

▪ New commercial ceramics: reliable > 400 kV operation, to reach lower emittance at very high current  

>100mA

▪ Lower outgassing materials are needed to break into the 10-14 Torr barrier, to create longer lifetime 

and greater facility operations

▪ ~mA polarized electron beam with > 1 kC charge lifetimes, the next vacuum frontier for GaAs 

superlattice dc photo-guns

▪ ~100 mA unpolarized electron beam with 10’s of kC charge lifetime, achieving low emittance ~ 1 μm 

with high charge > 1 nC

 

Source of choice for spin-polarized electron-bunch generation
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Roadmap for Normal-Conducting RF (NCRF) Guns

▪ NCRF guns reach higher gradient essential for lower 
emittance and higher brightness

– LCLS gun 100pC, emittance 150nm at 120MV/m on cathode 

▪ Application to HEP – Linear collider unpolarized RF e-gun; 
synergies with NP and LCLS-II

▪ Achieving very high gradient >400 MV/m for very ~nsec 
pulse generation in the X-band frequency [1]

▪ Cryogenically cooled NC structures for achieving higher RF duty factor 
at higher gradients (C3)

▪ Low frequency (<200 MHz) RF structures operating in the CW regime 
with high gradient

High-gradient for bright beams generation
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[W.H. Tan, et al. PRAB 2022]

[1] W. H. Tan et al, “Demonstration of sub-GV/m accelerating field in a photoemission electron gun powered by nanosecond X-band radio-

frequency pulses,” Phys. Rev. Accel. Beams 25, 083402 (2022).



Roadmap for Superconducting RF (SRF) Guns

▪ SCRF guns are promising with vacuum levels comparable to DC guns but at higher gradients

▪ Application – Low emittance beams for linear colliders, very high current e- beams (pol/unpol), synergies 

with NP  

▪ Integrating conventional non-SRF photocathodes to SRF guns with thermal/RF/particulate isolation for 

higher QE/POL

▪ Generation of high current > 10 mA spin polarized beams from GaAs with charge lifetime comparable to 

DC gun. 

▪ Photo-cathode material choice is important as SRF cavity is sensitive to contamination, especially if the 

cathode is at risk of being overheated [1].

Combing DC & RF guns advantages
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[1] Rong Xiang, Recent progress on advanced photocathodes for SC RF guns, Snowmass2021 Electron Source workshop, https://indico.fnal.gov/event/46053/ 



Photocathode and Drive-Laser

⚫ Metal

➢ Copper (Cu), Magnesium (Mg), Lead (Pb)

⚫ Semiconductor

➢ Cesium Telluride (Cs2Te), Alkali Antimonide (K2CsSb), Gallium Arsenide (GaAs) and III-V semiconductors such as Gallium 
Nitride (GaN)[3].

⚫ Cathode properties: 

➢ QE, lifetime, response time, thermal emittance (Mean Transverse Energy related), dark current e

⚫ Drive-laser 

⚫ Wavelength, power, and  shaping: 

Cathodes can be fabricated using different materials with different characteristics[1,2]. 

[1] Jana Schaber, Rong Xiang a and Nikolai Gaponik, “Review of photocathodes for electron beam sources in particle accelerators,” J. Mater. Chem. C, 2023, 11, 3162

[2] D.H. Dowell et al., “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res., Sect. A, 2010, 622, 685–697. https://doi.org/10.1016/j.nima.2010.03.104

[3] L. Cultreta et al, “Photoemission characterization of N-polar III-Nitride photocathodes as bright electron beam source for accelerator applications,” arXiv:2110.01533v1. 
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Challenges for Cathodes
▪ Robust photocathodes/coating for high average currents (100 mA un-pol., 20 mA 

pol.):

– Frequent (daily) cathode replacements while possible are not ideal;

– Enable operation of otherwise “delicate” materials like GaAs in “harsh” environment (RF guns) to 

leverage NCRF gradients.

▪ Increasing the QE at near threshold to leverage lower MTEs:

– MTEs of electron is decreased at threshold as well as QE;

▪ Operation at cryogenic temperatures and higher gradients:

– Cryo-temperatures are beneficial for producing electrons with low MTEs;

– Leveraging cryocooled (or other) NCRF or SRF guns higher than DC accelerating gradients.

▪ Exploring new promising materials and structures:

– Transition from bulk materials to engineered, nanofabricated structures -photocathode tailoring-;

– Exploring new classes of materials -III-Nitrides, II-VIs, atomically ordered band-structure engineered 

cathodes, spin filters;
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Photocathode Drive-Laser Shaping I 

⚫ Produce ellipsoidal bunches to linearize

the space-charge force and mitigate 

emittance growth

⚫ Pre-shape the beam to control collective 

effects(example of Lame oval super-ellipsoids to 

control longitudinal phase-space ”horns”)

 

Ab-initio control of the electron bunch 
to conserve brightness
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Photo-cathode Drive-Laser Shaping II 

⚫ Transverse shaping for beam focusing and 

injection in asymmetric structures (i.e. in 

wakefield accelerators)

⚫ Segmented beam generation for coherent-

radiation source

⚫ Longitudinal beam 

shaping (ramped 

bunch)

Pre-shaping for specific applications
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Injectors
▪ Conventional injectors 

– Emittance preservation. Preserve brighter beams from the brighter guns to the end of 
the injector 

• Limit space charge induced :
➢ Linear: solenoids are used to compensate linear SC
➢ Nonlinear: Laser shaping can be used to compensate nonlinear SC (elliptical laser 

distribution)
➢ Eliminate double-horn current profile

• Limit asymmetric RF fields emittance growth to 1%
➢ SRF cavity coupler kicks (dipole, quadrupole)

• Limit gun solenoid emittance growth to 1% 
➢ Spherical aberrations
➢ Axial symmetry

– Phase Space Partitioning. Match the beam phase space for required main linac 
parameters

• Linearize longitudinal phase space
• Preserve spin-dynamics to minimize depolarization

– Capture. High capture efficiency of buncher (from DC gun e-, VHF gun, SRF gun)

▪ Advanced injectors

– Develop e+/e- sources producing a phase-space volume commensurate with final emittances
– offer a path to circumvent the DR (cost and complexity reduction)

Photocathode Physics for Photoinjectors Workshop          Yine Sun            10/3/2023 22



e+/e- linear collider

▪ The 6D brightness from a state of 

the art photoinjector (DESY PITZ) 

is comparable to the one produce 

in LC designs

▪ This suggests a recipe for circumventing

the damping ring

− Produce a bright “correlated” beam 

− Use cross-plane phase-space manipulations

to repartition and redistribute the beam 

emittance between the different degrees of 

freedom

 

What a “good” source buys you?
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Injector for e+/e- linear collider

6D Emittance manipulation to generate beam with ILC-like parameters

▪ Initial eigen emittance

 

▪ After RFBT

 

▪ After EEX
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Near-term  (<5 years ) Mid-term (5~10 years)
Long-term (10~20 

years)

NCRF: cryo gun at 250 MV/m;  x-band gun, CW and Low Frequency rf gune- Gun

e- Injector

e+ polarized

e+

unpolarized

e- Cathode

Year

Polarized GaAs in an SRF photogun

DC gun beam ~1-10 mA polarized

SC undulators

Compton-based sources - high flux circularly polarized gamma-rays R&D

Bremmstrahlung polarized positron source development

NCRF, SRF accelerating cavities: fully RF symmetrized fields to eliminate emittance growth to 10% (near), 1%(mid), 0.1%(far)

Targets for high intensity

Capture and acceleration sections

Compact sources for accelerator and ultrafast science (also polarized)

Collider-class polarized e+ source

Control laser profile, limit nonlinear SC induced emittance growth: beer can (mid); elliptical (far)

Robust photocathodes in DC guns (20mA pol. and 100 mA unpol.)

Partition phase space: RFBT+EEX for damping ring free (mid), linear LPS (long)

Cryogenic temperatures and very high fields operation

Photocathodes with 1% QE and 30 meV MTEs Photocathodes with 1% QE and 5 meV MTEs

Continue to explore new and promising photocathodes (robust surfaces, nano-structures, higher QE and polarization)

High Charge Drive Bunch Trains: charge-balanced, equal energy bunches duration 5-25 nsec. 

SCRF gun 50 MV/m

Reliable high-P GaAs supply chain

DC gun beam 10~20 mA polarized10-14 Torr vacuum for long GaAs lifetime

April 2023: e± Source Roadmap Working Group Report

10-14 Torr vacuum for long GaAs lifetime Routine 10’s mA GaAs beams

Photocathode Physics for Photoinjectors Workshop          Yine 
Sun            10/3/2023
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