Electron Sources for Particle Accelerators

YINE SUN Advanced Photon Source Argonne National Lab.

Oct. 3, 2023

Photocathode Physics for Photoinjectors Workshop

Stony Brook, New York

Snowmass2021 Electron Source Workshop

Feb 16 – 18, 2022 JS/Central timezone	https://i	ndico.fnal.gov/event	/46053/		Enter your search t	
Overview Charge		Starts Feb 16, 2022, 9:25 AM	И	Online-only	v Workshop No in-persor	n mee
Timetable		Ends Feb 18, 2022, 3:30 PM US/Central		,		
Registration	8	WORKSHOP ORGANIZERS			1	-
Participant List		Cathodes	Guns		Injectors	
Organizing Committees		Joe Grames (Jlab)	Daniele Filippetto (LBL)		John Power (ANL)	
Contacts		Siddharth Karkare (ASU)	Carlos Hernandez-Garci	a (Jlab)	Erdong Wang(BNL)	
mgerches@anl.gov		L			JL	1
yinesun@anl.gov		Workshop Chair: Yine Sun (A				

Q

e[±] Source Roadmap Working Group Report

Luca Cultrera,¹ Spencer Gessner,² Joe Grames,³ Siddharth Karkare,⁴ Pietro Musumeci,⁵ Philippe Piot,^{6,7} John Power,⁷ Yine Sun⁷

¹Brookhaven National Lab., Upton, NY 11973
²SLAC National Accelerator Lab., Menlo Park, CA 94025
³Jefferson Lab., Newport News, VA 23606
⁴Arizona State University, Tempe, AZ 85281
⁵University of California, Los Angeles, CA 90095
⁶Northern Illinois University, DeKalb, IL 60115
⁷Argonne National Lab., Lemont, IL 60439

https://indico.fnal.gov/event/59123/ HEP Target and Sources Road Map workshop April 11-12, 2023, Fermilab, Batavia, IL 60510

Outline

- Applications of electron sources in particle accelerators
 - High Energy Physics
 - Nuclear Physics
 - Light Sources
- The architecture of electron sources
 - Guns
 - Cathodes
 - Injectors
- Roadmap for electron source development

Applications of electron sources in particle accelerators

Electrons are widely used for different types of accelerators. In this presentation we will focus on electron injectors used in the following three areas of applications:

- Electron-Positron Colliders: High luminosity requires
 - Flat beam w/ small vertical emittance on nm level, and high average current
- Advanced accelerators
 - Sources matched to high-frequency acceleration (optical, THz)
 - Sources to produce "drive" bunch (high charge + shaped) for beam-driven wakefield acceleration in structures or plasmas.
- Accelerator-based light sources
 - Main driver for photoinjectors R&D over the last several decades
 - Photoinjectors for linac-based free electron lasers
 - High average current DC guns for ERLs

Electron Sources for High Energy Physics/Nuclear Physics

There are several types of photoinjectors for different purposes:

- Main beam injector (high brightness): provide a few hundreds of µA of polarized electrons such as in ILC, SuperKEKB etc [1]; 10s of mA for LHC -- beyond current state of art.
 - Accelerate the gun beam until it is no longer space-charge dominated (typically 100 MeV) and inject into the main accelerator. Injector must not increase the emittance generated by cathode and gun.
- Drive beam injector (High-charge bunch trains): used for beam-driven wakefield acceleration
- Secondary beam injector (e.g. e- beam to e+ beam, as baseline for KEK ILC e+)
 - 10s of mA spin polarized electrons are needed to generate µA of polarized positrons
- Electron cooling injector (High-current) for hadron cooling [2]

[1] Luca Cultrera, Spin polarized electron beams production beyond III-V semiconductors, <u>https://arxiv.org/abs/2206.15345</u>
 [2] Xiaofeng Gu, this workshop.

An Example of Electron Sources For Colliders

DC-gun

1 GHz buncher

2 GHz buncher + accelerator

- Compact Linear Collider (CLIC) Electron Beam [1]
 - Main beam: electrons need to be spin-polarized (>80%)
 - DC photoinjectors with GaAs cathode using polarized drive laser;
 - Drive beam: DC thermionic or rf photocathode gun

[1] A. Latina, "Electron Source Requirements for Electron Colliders", Snowmass2021 Electron Source Workshop, 2/16/2022, https://indico.fnal.gov/event/46053/
 [2] F. Zhou, A. Brachmann, T. Maruyama, and J. C. Sheppard, "Polarized photocathode R&D for future linear colliders", AIP Conference Proceedings, vol. 1149, no. 1, pp. 992–996, 2009, SLAC-PUB-13514.
 [3] O. Mete et al, "Production of long bunch trains with 4.5 μC total charge using a photoinjector", Phys. Rev. ST Accel. Beams 15, 022803

Electron Sources for Advanced Accelerators

- Small beam size over a longer distance (i.e. small beam emittance) will allow stronger interaction of electron beam.
 - Dielectric laser accelerator[1]: hundred of nm aperture size and hundreds of µm long structures, only 2.2% transmission (~11fC charge transmitted for an initial beam with 5 pC, $16x7 \mu m$ emittance, 24 keV energy spread and 60 MeV beam
 - structure-based wakefield acceleration
 - Corrugated waveguides [2]: 2-mm ID, 10-cm long
- Nano tips
 - ~10s pm emittance

[1]

FIG. 1. Dimensions of the cylindrical corrugated waveguide: a=1 mm, p (period) $= 340 \,\mu\text{m}$, g (gap) $= 180 \,\mu\text{m}$, d (depth) = 264 μ m, R (corner radius) = 80 μ m.

Figure 1 DLA structure and experimental set-up. a, Scanning electron microscope image of the longitudinal cross-section of a DLA structure fabricated as depicted in Extended Data Fig. 1a. Scale bar, 2 µm. b, Experimental set-up. Inset, a diagram of the DLA structure indicating the

field polarization direction and the effective periodic phase reset, depicted as alternating red (acceleration) and black (deceleration) arrows. A snapshot of the simulated fields in the structure shows the corresponding spatial modulation in the vacuum channel. See text for details.

camera

[1] E. A. Peralta et al, "Demonstration of electron acceleration in a laser-driven dielectric microstructure," Nature 503, pages 91–94 (2013), https://doi.org/10.1038/nature12664 [2] A. Siy et al, "Fabrication and testing of corrugated waveguides for a collinear wakefield accelerator," Phys. Rev. Accel. Beams 25, 021302 – Published 17 February 2022

TABLE I. Electron beam parameters at ATF.

Parameter	Value 1	Value 2	Unit
Beam energy, \mathcal{E}_0	55	55	MeV
Bunch charge, Q	150	130/170	pC
Charge distribution, $q(s)$	flat top	flat top	
Bunch length, ℓ_b/c^a	1.5	5	ps
Slice energy spread, σ_E	tbd	65	keV

Electron Sources for Advanced Accelerators

- Beam-Driven plasma accelerator:
 - Drive beam: synergy with injectors for light sources
 - Witness beam: uniform acceleration can be achieved via precise bunch current profile shaping
 - Examples:
 - FlashForward: FLASH FEL gun, 1.3GHz with Cs2TE cathode
 - FACET: LCLS gun, 2.856GHz with copper cathode, up to 3nC, with a few µm emittance. Bunch is compressed to achieve high peak charge (up to 10kA).
- Laser plasma [1]
 - Self-produced.

[1] Carl Schroeder, Plasma Photocathode Injectors, Snowmass2021 Electron Source workshop, 2/2021, https://indico.fnal.gov/event/46053/

Electron Sources for Light Sources

- Photoinjectors are commonly used in FELs
- Strategies to produce the required brightness:
 - Produce low peak current beam with ultra-low emittance (implement laser shaping, emittance compensation, mitigation of field asymmetries,...)
 - Accelerate beam to 100's MeV
 - Correct for nonlinearities (e.g. high-order accelerating cavities)
 - Control longitudinal emittance (laser heater to suppress microbunching instability)
 - Compress the beam to enhance the peak current (usually in a staged-compression scheme)

[F. Zhou, et al. LCLS-II INJECTOR PHYSICS DESIGN AND BEAM TUNING, SLAC-PUB-17124]

[Courtesy M. Krassilnikov DESY]

Examples of Electron Sources for Light Sources

- LCLS-I injector [1]
 - S-band NCRF Gun, 1.6-cell
 - 6 MeV gun beam energy 115 MV/m on cathode, 135 MeV injector
 - Emittance < 0.6 µm
 - Copper cathode, 250 pC bunch charge at 120 Hz rep rate
- Development over the years [2,3]:
 - Cathode cleaning for QE improvement 10⁻⁴
 - Transverse drive-laser profile shaping to improve emittance
 - Correction of higher order E&M field.

[1] F. Zhou, Snowmass2021 Electron Source workshop, 2/2022.[3] Dowell, Zhou, and Schmerge, PRAB 21. 010101 (2018)

Dowell et al, PRAB 2008

[2] Zhou et al., PRST-AB 15, 090703 (2012)

Examples of Electron Sources for Light Sources

LCLS-II injector [1]

- 186 MHz NCRF CW gun
- 1.3 GHz NC buncher + 1.3 GHz SCRF accelerating structures
- Cs₂Te cathode, 1µm/mm intrinsic emittance
- 5-10% QE, QE lifetime 2-3 weeks for 1MHz operation
- 50 W IR laser conversion to UV
- Development
 - Dark current collimation
 - New gun with lower field emission
- Supported first lasing of LCLS-II!
- LCLS-II-HE low emittance injector SCRF gun R&D [2,3]

[1] F. Zhou, Snowmass2021 Electron Source workshop, 2/2022, https://indico.fnal.gov/event/46053/. [2] J. Lewellen et al, https://accelconf.web.cern.ch/napac2022/papers/wepa03.pdf, NAPAC2022. [3] S. H. Kim et al. https://accelconf.web.cern.ch/napac2022/papers/mopa85.pdf, NAPAC2022.

-oad loc

The important parameters of electron sources

- The electron source determines many essential beam characteristics which can be a make-orbreak point for their applications, such as spin-polarization, lifetime of the photocathode etc.
- Many applications of electron beams relate to the notion of brightness:

$$\mathcal{B} = rac{Q}{V}$$
 bunch charge phase-space volume

- In a linear accelerator, the electron source sets the limit of the smallest phase-space volume that can be ultimately achieved for a given amount of charge.
- In an accelerator ring, damping effects can "cool" the phase-space, however small phase-space at the electron source mitigates injection losses or enable compact injection scheme.
- Bunch charge, in the case of photoinjectors, is strongly related to the photocathode quantum efficiency and photocathode drive-laser power.

The architecture of electron sources

An electron source consists of

- An electron emission material: photocathode + photocathode drive-laser system, thermionic cathode, field emitters...
- An electron extraction E&M field: Direct Current (DC) gun, Normal Conducting Radio-Frequency (NCRF) gun, or Superconducting Radio-Frequency (SRF) gun
- A beam acceleration/manipulation section to:
 - Implement emittance compensation [e.g. solenoid]
 - Provide phase-space control [e.g. bunching cavity]
- The type of source generally:
 - Dictate the design of the upstream region (acceleration to ~100 MeV)
 - Impact the photocathode choice (and thus the final brightness, and ability to deliver spin-polarized beams)

Current (A)

[Adapted from Charles Brau, Vanderbilt U.]

e Sun 10/3/2023

Roadmap for DC Guns

Source of choice for spin-polarized electron-bunch generation

- DC guns have best vacuum (better than 10⁻¹¹ Torr) for GaAs photocathodes and generate highest CW current
- Application to HEP- Linear collider polarized DC e-gun, polarized positron beam generation, synergies with NP
- New commercial ceramics: reliable > 400 kV operation, to reach lower emittance at very high current >100mA
- Lower outgassing materials are needed to break into the 10⁻¹⁴ Torr barrier, to create longer lifetime and greater facility operations
- ~mA polarized electron beam with > 1 kC charge lifetimes, the next vacuum frontier for GaAs superlattice dc photo-guns
- ~100 mA unpolarized electron beam with 10's of kC charge lifetime, achieving low emittance ~ 1 μm with high charge > 1 nC

Roadmap for Normal-Conducting RF (NCRF) Guns High-gradient for bright beams generation

(a)

- NCRF guns reach higher gradient essential for lower emittance and higher brightness
 - LCLS gun 100pC, emittance 150nm at 120MV/m on cathode
- Application to HEP Linear collider unpolarized RF e-gun; synergies with NP and LCLS-II
- Achieving very high gradient >400 MV/m for very ~nsec pulse generation in the X-band frequency [1]
- Cryogenically cooled NC structures for achieving higher RF duty factor at higher gradients (C3)
- Low frequency (<200 MHz) RF structures operating in the CW regime with high gradient

(b) full-cell (m/vm) (m/vm) pulse tuner half-cell iris tuner ES . 200 beam $\tau_n = 10 \text{ ns}$ photocathode 100 coaxial 50 full cell half cell coupler time (ns) field on photocathode E_0 (MV/m) 4503.6 -425400 381.96 375350 325 80 100 60 120 laser launch phase φ_0 (deg)

[W.H. Tan, et al. PRAB 2022]

Roadmap for Superconducting RF (SRF) Guns

Combing DC & RF guns advantages

- SCRF guns are promising with vacuum levels comparable to DC guns but at higher gradients
- Application Low emittance beams for linear colliders, very high current e- beams (pol/unpol), synergies with NP
- Integrating conventional non-SRF photocathodes to SRF guns with thermal/RF/particulate isolation for higher QE/POL
- Generation of high current > 10 mA spin polarized beams from GaAs with charge lifetime comparable to DC gun.
- Photo-cathode material choice is important as SRF cavity is sensitive to contamination, especially if the cathode is at risk of being overheated [1].

[1] Rong Xiang, Recent progress on advanced photocathodes for SC RF guns, Snowmass2021 Electron Source workshop, https://indico.fnal.gov/event/46053/

Photocathode and Drive-Laser

Cathodes can be fabricated using different materials with different characteristics^[1,2].

• Metal

- Copper (Cu), Magnesium (Mg), Lead (Pb)
- Semiconductor
 - Cesium Telluride (Cs₂Te), Alkali Antimonide (K₂CsSb), Gallium Arsenide (GaAs) and III-V semiconductors such as Gallium Nitride (GaN)^[3].
- Cathode properties:
 - > QE, lifetime, response time, thermal emittance (Mean Transverse Energy related), dark current e
- Drive-laser
 - Wavelength, power, and shaping:

[1] Jana Schaber, Rong Xiang a and Nikolai Gaponik, "Review of photocathodes for electron beam sources in particle accelerators," *J. Mater. Chem. C, 2023, 11, 3162*[2] D.H. Dowell et al., "Cathode R&D for future light sources," Nucl. Instrum. Methods Phys. Res., Sect. A, 2010, 622, 685–697. https://doi.org/10.1016/j.nima.2010.03.104
[3] L. Cultreta et al, "Photoemission characterization of N-polar III-Nitride photocathodes as bright electron beam source for accelerator applications," arXiv:2110.01533v1.

Challenges for Cathodes

- Robust photocathodes/coating for high average currents (100 mA un-pol., 20 mA pol.):
 - Frequent (daily) cathode replacements while possible are not ideal;
 - Enable operation of otherwise "delicate" materials like GaAs in "harsh" environment (RF guns) to leverage NCRF gradients.
- Increasing the QE at near threshold to leverage lower MTEs:
 - MTEs of electron is decreased at threshold as well as QE;
- Operation at cryogenic temperatures and higher gradients:
 - Cryo-temperatures are beneficial for producing electrons with low MTEs;
 - Leveraging cryocooled (or other) NCRF or SRF guns higher than DC accelerating gradients.
- Exploring new promising materials and structures:
 - Transition from bulk materials to engineered, nanofabricated structures -photocathode tailoring-;
 - Exploring new classes of materials -III-Nitrides, II-VIs, atomically ordered band-structure engineered cathodes, spin filters;

Photocathode Drive-Laser Shaping I

Ab-initio control of the electron bunch to conserve brightness

- Produce ellipsoidal bunches to linearize the space-charge force and mitigate emittance growth
- Pre-shape the beam to control collective effects(example of Lame oval super-ellipsoids to control longitudinal phase-space "horns")

$$\left|\frac{x^2}{a_x^2} + \frac{y^2}{a_y^2}\right|^{\frac{\nu_\perp}{2}} + \left|\frac{t}{a_t}\right|^{\nu_t} = 1$$

[Xu, et al. PRAB 25,044001, (2022)]

3/2023

Photo-cathode Drive-Laser Shaping II

Pre-shaping for specific applications

- Transverse shaping for beam focusing and injection in asymmetric structures (i.e. in wakefield accelerators)
- Segmented beam generation for coherentradiation source
- Longitudinal beam shaping (ramped bunch)

10/3/2023

2400

 ω (THz)

2410

-10

-5

0

t (ps)

5

2390

10

Injectors

Conventional injectors

- <u>Emittance preservation</u>. Preserve brighter beams from the brighter guns to the end of the injector
 - Limit space charge induced :
 - Linear: solenoids are used to compensate linear SC
 - Nonlinear: Laser shaping can be used to compensate nonlinear SC (elliptical laser distribution)
 - Eliminate double-horn current profile
 - Limit asymmetric RF fields emittance growth to 1%
 - SKF cavity coupler kicks (dipole, quadrupole)
 - Limit gun solenoid emittance growth to 1%
 - Spherical aberrations
 - Axial symmetry
- Phase Space Partitioning. Match the beam phase space for required main linac parameters
 - Linearize longitudinal phase space
 - Preserve spin-dynamics to minimize depolarization
- <u>Capture</u>. High capture efficiency of buncher (from DC gun e-, VHF gun, SRF gun)

Advanced injectors

- Develop e+/e- sources producing a phase-space volume commensurate with final emittances
- offer a path to circumvent the DR (cost and complexity reduction)

e+/e- linear collider

What a "good" source buys you?

- The 6D brightness from a state of the art photoinjector (DESY PITZ) is comparable to the one produce in LC designs
- This suggests a recipe for circumventing the damping ring
 - Produce a bright "correlated" beam
 - Use cross-plane phase-space manipulations to repartition and redistribute the beam emittance between the different degrees of freedom

	ILC	CLIC	RF gun
Reference	[7]	[8]	[5]
Charge Q (nC)	3.2	0.83	2
Energy E_b (GeV)	250	380	24×10^{-3}
$\varepsilon_x ~(\mu m)$	10	0.9	1.3
$\varepsilon_y \ (nm)$	35	20	1.3×10^3
$\sigma_z \ (\mathrm{mm})$	0.3	0.07	2.31
σ_{δ} (%)	0.19	0.35	~ 0.1
ε_z (m)	0.27	0.18	$\sim 1.1 \times 10^{-4}$
$\mathcal{B}_6 \ (\mathrm{pC.\mu m^{-3}})$	3.4×10^{-2}	0.25	~ 11

[Xu, et al., *Damping-ring-free electron injector proposal for fugure linear colliders* PRAB 26, 014001 (2023)]

Injector for e+/e- linear collider

6D Emittance manipulation to generate beam with ILC-like parameters

April 2023: e[±] Source Roadmap Working Group Report

https://indico.fnal.gov/event/59123/

Voor	Noor torm (ZE voors)	Nid torm (E~10 years)	Long-term (10~20			
fear	Near-term (<5 years)	wild-term (5 10 years)	vears)			
	Reliable high-P GaAs supply chain Cryogenic temperatures and very high fields operation					
e⁻ Cathode	Robust photocathodes in DC guns (20mA pol. and 100 mA unpol.)					
	Photocathodes with 1% QE and 30 meV MTEs Photocathodes with 1% QE and 5 meV MTEs					
	Continue to explore new and promising photocathodes (robust surfaces, nano-structures, higher QE and polarization)					
e⁻ Gun	DC gun beam ~1-10 mA polarized	10 ⁻¹⁴ Torr vacuum for long GaAs lifetime	DC gun beam 10~20 mA polarized			
	NCRF: cryo gun at 250 MV/m; x-band gun, CW					
	Polarized GaAs in an SRF photogun	SCRF gun	50 MV/m			
e⁻ Injector	Control laser profile, limit nonlinear SC induced emittance growth: beer can (mid); elliptical (far)					
	NCRF, SRF accelerating cavities: fully RF symmetrized fields to eliminate emittance growth to 10% (near), 1% (mid), 0.1% (far)					
	Partition phase space: RFBT+EEX for damping ring free (mid), linear LPS (long)					
	High Charge Drive Bunch Trains: charge-balanced, equal energy bunches duration 5-25 nsec.					
e ⁺ polarized	SC undulators	Collider-	r-class polarized e+ source			
	Compton-based sources - high flux circularly polarized gamma-rays R&D					
	Bremmstrahlung polarized positron source deve	elopment				
e+	Targets for high intensity					
	Capture and					
unpolarized	Compact s	polarized)				
	10 ⁻¹⁴ Torr vacuum for long GaAs lifetime	Routine 10's mA GaAs beams				
	Photocathode Physic	cs for Photoinjectors Workshop Yine	25			

Sun 10/3/2023