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Can we operate a negative electron affinity photocathode without 
ultrahigh vacuum?
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Pros:
1. High quantum efficiency
2. Visible photon excitation

Cons:
1. Requires ultrahigh vacuum

Hernandez-Garcia, Carlos, Patrick G. O Shea, and Marcy L. Stutzman. "Electron sources for accelerators." Physics today61.2 (2008): 44.

Traditional Negative Electron Affinity Photocathode



Electronically Tunable NEA Photocathode

4



Working Principle
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- Voltage is applied between the semiconductor and graphene, generating an electric field which mimics the
surface dipole field in an NEA photocathode.

- Photo-excited electrons tunnel through the barrier and introduced into graphene with higher energy than EF,Gr

VFN ) VFN )
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Experimental results: Emission current vs VGr-Si



Experimental results: Emission current vs Anode voltage
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Stability at higher vacuum pressures



Experimental results: Emission current vs Optical power
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Peak EQE = 0.1%



Key emission characteristics

• Existence of a threshold VGr-Si to emit electrons
• Energy distribution of emitted electrons is broad
• Emission current shows a highly nonlinear dependence on optical 

power
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Existence of a threshold VGr-Si

• The electrons tunneling into/through SiO2 must gain higher energy 
than the vacuum level (0.9 eV higher than SiO2 conduction band 
minima)

• Direct tunneling of electrons through SiO2 will never allow this
• Electrons must tunnel into SiO2 conduction band (FN tunneling)
• These electrons must gain at least 0.9 eV energy from electric field

11



Threshold for applied voltage
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VFN ) VFN )



Broad energy distribution

• To have a broad energy distribution, electrons must scatter at SiO2
conduction band

• Possible scattering mechanisms for SiO2
• Longitudinal polar optical phonon scattering
• Acoustic phonon scattering
• Impact ionization scattering
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Monte Carlo simulation: Transport at SiO2
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Eox = 1 V/nm

Parabolic band approximation
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Eox = 1 V/nm

meff = m0

0.2 V/nm
1.0 V/nm

High energy tail heating

Monte Carlo simulation: Transport at SiO2



Nonlinear emission current

• Multiphoton absorption is highly unlikely in silicon for the optical 
power densities we have (103-104 W/m2)

• There is no dominant scattering mechanism for SiO2 that is nonlinear 
to electron injection rate/optical power 

• Optical power must modify the voltage distribution within the device
• Voltage dropped at depletion region at silicon
• Voltage dropped at oxide
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Voltage distribution between oxide and silicon

• Extremely small electron generation rate (dark/low optical power)
• No inversion layer can be formed at Si/SiO2 interface
• Majority voltage is dropped at silicon depletion layer (VGr-Si ≈ Vsi >> Vox)

• Moderate electron generation rate (moderate optical power)
• Incomplete generation of inversion layer
• Appreciable voltage drop across oxide

• High electron generation rate (high optical power)
• Complete inversion
• Majority voltage drop across oxide (VGr-Si ≈ Vox >> Vsi)

• Poisson’s equation determines how much voltage drops across different parts of 
the device (VGr-Si = VSi + Vox)

•
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Voltage redistribution by optical power
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VGr-Si = 26V
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Generation current density is proportional to 
optical power density

Higher optical power

Higher voltage/electric field at oxide

Higher tunneling rates 
(Nonlinear)

Electron distribution heating 
(Nonlinear)

Nonlinear emission current



• This is a silicon photocathode
• Fabrication is easier and cheaper

• NEA surface is controlled by voltage
• Can be turned on and off
• Stable at atmospheric conditions

• Photons need to have energy silicon bandgap
• Visible lasers are enough for emission

Summary
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