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processes can be lessened
by introducing capping layers.



Why Scattering States are Important
Graphene Capping Layer

Liu et al. showed that graphene is a good capping layer for
copper photocathodes.
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Figure: Adapted from Liu et al., DOI: 10.1063/1.4974738
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Why Scattering States are Important

Electron Transparency and Reflectivity

o Mean-transverse energy
(MTE) and quantum

efficiency (QE) are X

modulated by capping

layers Ty NN
“« NNV D AVAVAVAY
e We need electron MM PV

transparency and

reflectivity

e Transmission and reflection
can be taken directly from
scattering states
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Go Retro! Solving for Scattering States
Review: Scattering Theory

If we introduce a perturbing potential V/(r) to an unperturbed
Hamiltonian H, then the new eigenstate is:

Yi(r) = ™ / d®r Ge(r—r)V(r)i(r') (Lippmann-Schwinger)

m ikr

Gi(r) = orh?

(Green’s Function)

In practice, V/(r) is taken from density-functional theory (DFT)



Density Functional Theory (DFT)
1/2

Solve the many-body problem by minimizing the ground-state
energy functional (of electron density).

Many-body DFT
problem
electron
e > e density

1-»

Kohn-Sham Auxilliary System

v2 sc
_71/;,-0‘) + V2R (n)yi(r) = €i9i(r)

Many-body Problem — Single-particle QM



Density Functional Theory (DFT)
2/2

%JDFTX W f {Z)nuanTuMESPRESSD

Typical DFT software packages solve the Kohn-Sham states

with periodic boundary conditions.

Pros:
e Plane-wave basis set — Fast Fourier Transforms
Cons:

¢ (2D materials) Difficulties with scattering states



Fixing the PBC Issue
Trying to use PBCs

Graphene Energy Spectrum
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This is what we want

Graphene Band Structure
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This is what we get



BUT WHY ISN'T IT COMPATIBLE???

| understand neothing.




A Modified Green's Function

e The Green's Function is proportional to 1/r — cannot
neglect interactions with periodic images!
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A Modified Green's Function

e The Green's Function is proportional to 1/r — cannot
neglect interactions with periodic images!
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e Problem: How do we cut out interactions with periodic

images?



A Modified Green's Function

Answer: Cut off the Green's Function past a fixed distance!

G(r) — G'(r) = Ge()O(L - |z])

[ G

Gtr




The Technique

Simple method!
1. Replace G with G*
2. Extract the self-consistent potential (V/°¢) from DFT

3. Insert these ingredients into the LS Equation and solve!
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Simple method!
1. Replace G with G*
2. Extract the self-consistent potential (V/°¢) from DFT

3. Insert these ingredients into the LS Equation and solve!

Let's go a bit deeper!
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The Technique
The Method in More Detail

Rearranging the Lippmann-Schwinger Equation with algebra (in
bra-ket notation), we have:

(1= VG (V2 k) = (V2 o))
Looks like Ax = b!

e Solve for x = V5C |y ) using a suitable numerical solver

e Substitute back into the original equation:

W) = o) + G (VC b))



Using the Method

With the solution, we can:



Using the Method

With the solution, we can:

e Find scattering solutions at arbitrary excess energies



Using the Method

With the solution, we can:
e Find scattering solutions at arbitrary excess energies

e Find transmission (electron transparency) and reflection
(electron reflectivity) coefficients



Using the Method

With the solution, we can:
e Find scattering solutions at arbitrary excess energies

e Find transmission (electron transparency) and reflection
(electron reflectivity) coefficients

e Create photoemission plots
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Results: Three Different Materials

Graphene Hexagonal Boron
Nitride

1H-Niobium
Diselenide

e Prototypical e Same unit cell
2D material as graphene

e Experimental e Slightly bigger
data exists bond length

e Material of

recent interest

e 3-atom thick
material

e Heavier atoms

e Better against

ion back-
bombardment



Results: Testing Graphene

Experimental Results

Liu et al. showed that graphene is a good capping layer for
copper photocathodes.
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Results: Graphene

Electron Transmission and Reflection

We first study the electron transparency at normal incidence

Monolayer Graphene
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Results: Graphene

Electron Transmission and Reflection

We first study the electron transparency at normal incidence

Monolayer Graphene

| A modest electron
transparency predicted

e The electron transparency

is (possibly) high enough
to offset the reflection from

‘ : ‘ : oxidation layers
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Results: Graphene

Angular Dependency for Electron Transmission

The angular distribution of electron transparency for
graphene at 0.3 eV:
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Results: Graphene

Angular Dependency for Electron Transmission

The angular distribution of electron transparency for
graphene at 0.3 eV:
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Results: Graphene

Angular Dependency for Electron Transmission

The angular distribution of electron transparency for

graphene at 0.3 eV:
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Angular Dependency for Electron Transmission

The angular distribution of electron transparency for
graphene at 0.3 eV:
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Results: Graphene

Angular Dependency for Electron Transmission

The angular distribution of electron transparency for
graphene at 0.3 eV:
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Results: Graphene

Using the Truncated Green's Function Technique
Photoemission with 12 eV photons (4.67 eV max excess

energy):
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Results: Graphene

Using the Truncated Green's Function Technique

Photoemission with 12 eV photons (4.67 eV max excess

energy):

05 Monolayer Graphene

e Spread out distribution —
Large MTE, MTE » 1 eV

e Localized photoemission

k, (Bohr™')

e six-fold rotational
symmetry




Results: hBN

Electron Transmission and Reflection

Monolayer Boron Nitride
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Results: hBN

Electron Transmission and Reflection

Monolayer Boron Nitride

e Transmission and reflection
have similar shape to
graphene




Results: hBN

Electron Transmission and Reflection

Monolayer Boron Nitride

——T+R/1 e Transmission and reflection
06 have similar shape to

T

graphene

e Transmission is marginally
better
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Results: hBN

Angular Dependency for Electron Transmission

Electron transmission at 0.3 eV excess energy:

Monolayer Hexagonal Boron Nitride
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Results: hBN

Angular Dependency for Electron Transmission

Electron transmission at 0.3 eV excess energy:

Monolayer Hexagonal Boron Nitride
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Results: hBN

Angular Dependency for Electron Transmission

Electron transmission at 0.3 eV excess energy:

Monolayer Hexagonal Boron Nitride
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Results: hBN

Angular Dependency for Electron Transmission

Electron transmission at 0.3 eV excess energy:

Monolayer Hexagonal Boron Nitride
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Results: hBN

(Direct) Photoemission

Photoemission with 10 eV photons (4.1 eV max excess energy):
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Results: hBN

(Direct) Photoemission

Photoemission with 10 eV photons (4.1 eV max excess energy):
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Results: hBN

(Direct) Photoemission

Photoemission with 10 eV photons (4.1 eV max excess energy):
Mo(r)l(g)layer Hexagonal Boron Nitride

e MTE ~0.373 eV

e Three-fold rotational
symmetry

k, (Bohr™)

e Possibly a good
photoemitter! Narrow

beam produced!

k. (Bohr™1)



Results: 1H-NbSe;

Electron Transmission and Reflection

1H-Niobium Diselenide
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Results: 1H-NbSe;

Electron Transmission and Reflection

1H-Niobium Diselenide

" e Three-atom thick material
— better protection against
ion back-bombardment

| e Transmission decays!

e BUT! Better transmission
for E $0.1eV!




Results: 1H-NbSe>

Angular Dependency for Electron Transmission

Electron transmission at 0.3 eV excess energy

Monolayer Niobium Diselenide
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Results: 1H-NbSe>

Angular Dependency for Electron Transmission

Electron transmission at 0.3 eV excess energy
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Results: 1H-NbSe>

Angular Dependency for Electron Transmission

Electron transmission at 0.3 eV excess energy
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Results: 1H-NbSe>

Angular Dependency for Electron Transmission

Electron transmission at 0.3 eV excess energy

Monolayer Niobium Diselenide

06 ® The transmission is
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-0.1 0 0.1

(blue).

0.1

—~

0.05

Bohr!
o

T2-0.05
=2

-0.1

-0.15

k. (Bohr—1)



Results: 1H-NbSe>

(Direct) Photoemission

Photoemission with 6 eV photons (1.1 eV max excess energy):
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Results: 1H-NbSe>

(Direct) Photoemission

Photoemission with 6 eV photons (1.1 eV max excess energy):

. 1H-Niobium Diselenide
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Results: 1H-NbSe>

(Direct) Photoemission

Photoemission with 6 eV photons (1.1 eV max excess energy):
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Results: 1H-NbSe>

(Direct) Photoemission

Photoemission with 6 eV photons (1.1 eV max excess energy):

08 1H-Niobium Diselenide

e MTE ~0.239 eV
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Results: Summary of Energy Distribution
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Results: Summary of Energy Distribution

Monolayer Graphene Monolayer Boron Nitride
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Results: Summary of Transverse Momenta Distribution
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Results: Summary of Transverse Momenta Distribution
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Results: Summary of Transverse Momenta Distribution
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Results: Summary of Transverse Momenta Distribution

Monolayer Graphene Monolayer Hexagonal Boron Nltrlde
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Results: Summary of Photoemission

D’Io(r)lglaycr Hexagonal Boron Nitride
.0

Monolayer Graphene

k, (Bohr™!)
k, (Bohr™!)

k, (Bohr!)




Results: Summary of Photoemission
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Results: Summary of Photoemission

I\'Io(r)lglaycr Hexagonal Boron Nitride
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Conclusions

Material Energy Angular | Photocathode
Graphene || © (30.1eV) © ®

hBN ® (30.1eV) © ®
1H-NbSe, | © (50.1eV) ® @)

e Only three of a plethora of materials!

e Any suggestions?



Thank you for listening!
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