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Why Scattering States are Important
Graphene Capping Layer

Liu et al. showed that graphene is a good capping layer for

copper photocathodes.

Figure: Adapted from Liu et al., DOI: 10.1063/1.4974738



Table of Contents

● Capping Layers as 2D Materials

● Theory of Impact of Capping Layers on Quantum

Efficiency (QE) and Mean-Transverse Energy (MTE)

● Results: Graphene, hBN, 1H-NbSe2



Why Scattering States are Important
Electron Transparency and Reflectivity

● Mean-transverse energy

(MTE) and quantum

efficiency (QE) are

modulated by capping

layers

● We need electron

transparency and

reflectivity

● Transmission and reflection

can be taken directly from

scattering states
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Go Retro! Solving for Scattering States
Review: Scattering Theory

If we introduce a perturbing potential V (r) to an unperturbed

Hamiltonian H, then the new eigenstate is:

ψk(r) = e
ik⋅r
+ ∫ d3r ′ Gk(r − r

′
)V (r′)ψk(r

′
) (Lippmann-Schwinger)

Gk(r) = −
m

2πh̵2
e ikr

r
(Green’s Function)

In practice, V (r) is taken from density-functional theory (DFT)



Density Functional Theory (DFT)
1/2

Solve the many-body problem by minimizing the ground-state

energy functional (of electron density).

Kohn-Sham Auxilliary System

−
∇2

2
ψi(r) +V

SC
(r)ψi(r) = ϵiψi(r)

Many-body Problem → Single-particle QM



Density Functional Theory (DFT)
2/2

Typical DFT software packages solve the Kohn-Sham states

with periodic boundary conditions.

Pros:

● Plane-wave basis set → Fast Fourier Transforms

Cons:

● (2D materials) Difficulties with scattering states



Fixing the PBC Issue
Trying to use PBCs

Graphene Energy Spectrum

(kx = ky = 0)

This is what we want

Graphene Band Structure

(kx = ky = 0)

This is what we get



BUT WHY ISN’T IT COMPATIBLE???



A Modified Green’s Function

● The Green’s Function is proportional to 1/r → cannot

neglect interactions with periodic images!

● Problem: How do we cut out interactions with periodic

images?
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A Modified Green’s Function

Answer: Cut off the Green’s Function past a fixed distance!

Gk(r)Ð→ G tr
k (r) = Gk(r)Θ(L − ∣z ∣)



The Technique

Simple method!

1. Replace G with G tr

2. Extract the self-consistent potential (V SC ) from DFT

3. Insert these ingredients into the LS Equation and solve!

Let’s go a bit deeper!
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The Technique
The Method in More Detail

Rearranging the Lippmann-Schwinger Equation with algebra (in

bra-ket notation), we have:

(1 − V̂ SC Ĝ tr
k )(V̂

SC
∣ψk⟩) = (V̂

SC
∣ϕk⟩)

Looks like Ax = b!

● Solve for x = V̂ SC ∣ψk⟩ using a suitable numerical solver

● Substitute back into the original equation:

∣ψk⟩ = ∣ϕk⟩ + Ĝ
tr
k (V̂

SC ∣ψk⟩)
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Using the Method

With the solution, we can:

● Find scattering solutions at arbitrary excess energies

● Find transmission (electron transparency) and reflection

(electron reflectivity) coefficients

● Create photoemission plots
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Results: Three Different Materials

Graphene

● Prototypical

2D material

● Experimental

data exists

Hexagonal Boron

Nitride

● Same unit cell

as graphene

● Slightly bigger

bond length

● Material of

recent interest

1H-Niobium

Diselenide

● 3-atom thick

material

● Heavier atoms

● Better against

ion back-

bombardment



Results: Testing Graphene
Experimental Results

Liu et al. showed that graphene is a good capping layer for

copper photocathodes.

Figure: Adapted from Liu et al., DOI: 10.1063/1.4974738



Results: Graphene
Electron Transmission and Reflection

We first study the electron transparency at normal incidence

● A modest electron

transparency predicted

● The electron transparency

is (possibly) high enough

to offset the reflection from

oxidation layers
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Results: Graphene
Angular Dependency for Electron Transmission

The angular distribution of electron transparency for

graphene at 0.3 eV:

● six-fold rotational

symmetry

● Nearly uniform electron

transparency

● Transmit ≤ 50 meV

transverse energy (blue)

electrons without much

distortion!
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Results: Graphene
Using the Truncated Green’s Function Technique

Photoemission with 12 eV photons (4.67 eV max excess

energy):

● Spread out distribution →

Large MTE, MTE ≈ 1 eV

● Localized photoemission

● six-fold rotational

symmetry
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Electron Transmission and Reflection

● Transmission and reflection

have similar shape to

graphene

● Transmission is marginally

better
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Results: hBN
Angular Dependency for Electron Transmission

Electron transmission at 0.3 eV excess energy:

● Three-fold rotational

symmetry

● Nearly constant

transmission

● Transmit ≤ 50 meV

transverse energy (blue)

electrons without much

distortion!
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Results: hBN
(Direct) Photoemission

Photoemission with 10 eV photons (4.1 eV max excess energy):

● MTE ≈ 0.373 eV

● Three-fold rotational

symmetry

● Possibly a good

photoemitter! Narrow

beam produced!
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Results: 1H-NbSe2
Electron Transmission and Reflection

● Three-atom thick material

→ better protection against

ion back-bombardment

● Transmission decays!

● BUT! Better transmission

for E ⪅ 0.1 eV!
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Results: 1H-NbSe2
Angular Dependency for Electron Transmission

Electron transmission at 0.3 eV excess energy

● The transmission is

localized about a ring

● Three-fold rotational

symmetry

● Not ideal! Highly distorted

beam for ≤ 50 meV beam

(blue).
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(Direct) Photoemission

Photoemission with 6 eV photons (1.1 eV max excess energy):

● MTE ≈ 0.239 eV

● Six-fold rotational

symmetry

● Ideal! Want low MTE

beams!
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Conclusions

Material Energy Angular Photocathode

Graphene , (⪆ 0.1 eV) , /
hBN , (⪆ 0.1 eV) , /

1H-NbSe2 , (⪅ 0.1 eV) / ,

● Only three of a plethora of materials!

● Any suggestions?
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Thank you for listening!

Tyler Wu

tcw66@cornell.edu


