

Bright Electron Beams from Plasmonic Spiral Photocathode

Alimohammed Kachwala Arizona State University

- Introduction
- Reducing Emittance
- Plasmonic Spiral Photocathode
- ➢FDTD Simulation
- ≻Fabrication and Characterization: Past and Present Attempts
- Characterization Using Photoemission Electron Microscope
- ≻Electron Emission Spot Size
- ≻Mean Transverse Energy (MTE)
- ≻Emittance
- ≻4D-Brightness
- Conclusion
- Future Work

Introduction

UED

Coherence Length

$$L_c = \lambda \frac{\sigma_e}{\varepsilon_n}$$

$$\begin{split} \mathbf{L} &= \text{Coherence Length} \\ \boldsymbol{\lambda} &= \text{Reduced Compton Wavelength} \\ \boldsymbol{\sigma}_{\mathrm{e}} &= \text{RMS electron beam size} \\ \boldsymbol{\varepsilon}_n &= \text{Normalized Emittance} \end{split}$$

Reduce ε_n to increase L_c

Physical Review Special Topics-Accelerators and Beams 17.12 (2014): 120701.

Surface Plasmon Polariton

Gold Nanotip

Plasmonic Spiral Photocathode: FDTD Simulation

Source: Circularly Polarized Gaussian; $\hbar \omega = 1.55 \text{ eV} (\lambda = 800 \text{ nm})$; Pulse Length = 150 fs

Fowler Dubridge: $J_n \alpha I^n$

$$\Phi_{Au} \sim 5.4 \text{ eV}; \hbar \omega = 1.55 \text{ eV}$$

 $n = 4, J_4 \alpha I^4$

Non-Linear Photoemission: electron source size ~140 nm

Physical review letters 104.8 (2010): 084801.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 601.1-2 (2009): 123-131.

Past Attempts: Fabrication

Template Stripping Method

- 1. Spin coat resist
- 2. Expose, develop 💻
- 3. Evaporate gold
- 4. Apply epoxy 5. Peel off

Past Attempts: PEEM Images

New Fabrication: SEM Images

For constructive interference at the center of the spiral, $p = \lambda_{spp}$ Where p = pitch of the spiral

Hence, interference at the center of the spiral is totally independent on the starting radius

Spiral Photocathode: Study & Characterization

LASER cleaning of Hot-Spots

PEEM Hg Lamp + LASER

LASER Parameters

 $\lambda = 800$ nm; Pulse Length = 150 fs; Rep. Rate = 500 kHz

- Overnight exposure of Average Power = 0.5 mW
- Hot Spots disappeared after overnight exposure (Spiral Cleaned)

10 μm

LASER Parameters λ = 800 nm; Pulse Length = 150 fs Rep. Rate = 500 kHz

Photoemission Measurement: Spiral Activation

10 µm

Electron Emission spot; Average incident LASER power = $136 \mu W$

~120 nm electron emission spot size makes sense as Order of Emission ~5th

~120 nm electron emission spot size over wide range of LASER power

Spot size increases

- $e^- e^-$ interaction
- Effect of plasmonic fields

Record $\varepsilon_n \sim 30$ pm rad achieved from a flat metal photocathode without the use of any pinholes

- 2 pm rad from ZrO/W emitter tip in an Electron Microscope [*Ultramicroscopy* 176 (2017): 63-73]
- 700 pm rad from flat cathode in a photoinjector after the pinhole [*Structural Dynamics* 9.2 (2022)]

ε_n increases

- $e^- e^-$ interaction
- Effect of plasmonic fields
- $e^- e^-$ interaction could result in

correlated $x - p_x$ growth so emittance could still be small

Conclusion

10/3/23

- Explain the spiral activation process
- Explain the ring like structure in k space images
- Measure the spiral with small start radius ($R_0 = 0.372 \ \mu m$)
- Study dependence on wavelength (design for multiphoton emission closer to threshold)
- Integrate these spiral cathodes with high QE (low MTE) alkali antimonide films

Acknowledgement

Daniele Filippetto

- Arizona State University ≻Mansoure Rizi
- Siddharth Karkare (PI)

- University of Chicago Christopher Pierce
- Cornell University
- ► Jared Maxson

Thank You! Questions? Comments?

Back Up Slides

Spiral Tilt Compensation

$$\frac{\Delta p}{c} = \frac{\Delta r}{v_{sp}}$$

$$\Delta r = \frac{(\Delta p)(v_{sp})}{c}$$

$$\Delta r = \frac{(\Delta p)(\lambda_{sp})}{\lambda} = \frac{(\Delta x sin(\theta))(\lambda_{sp})}{\lambda}$$

$$x' = r\cos(\phi) + r\cos(\phi)\sin(\theta)\left(\frac{\lambda_{sp}}{\lambda}\right)\cos(\phi)$$
$$y' = r\sin(\phi) + r\cos(\phi)\sin(\theta)\left(\frac{\lambda_{sp}}{\lambda}\right)\sin(\phi)$$

Plasmonic Spiral: Tilt Compensation

Plasmonic Spiral: Tilt Compensation

FWHM ~ 140 nm

Brief Description of PEEM

Density of States: Gold

Physical Chemistry Chemical Physics 17.39 (2015): 26036-26042

- Brightness of Electron
 Bunch
- Charge density in phase space

B = Brightness of Electron Bunch

 Q_{bunch} = Bunch Charge \mathcal{E}_n = Normalized Emittance

- Increase Amount of Charge Extracted
- Reduce Emittance/Mean Transverse Energy (MTE)

Coherence Length

L = Coherence Length λ = Reduced Compton Wavelength σ_{e} = RMS electron beam size \mathcal{E}_{n} = Normalized Emittance

$$L_c \ge 4 \text{ nm}$$

 $\sigma_e \le 200 \text{ }\mu\text{m}$
 $\varepsilon_n \le 20 \text{ nm rad.}$

The electron beam emitted from the photocathode is contained within a phase space volume, known as the emittance

$$\varepsilon_{nx} = \frac{\sigma_x \sigma_{p_x}}{mc} = \sigma_x \sqrt{\frac{\text{MTE}}{mc^2}}$$

- Reduce Emission Area
- Reduce Mean Transverse Energy (MTE)