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Quantum Mechanics poses challenges to simulating
ultra-fast and ultra-small emission conditions:

e− tunneling into a nanogap , instantaneous
e− have a wave-behavior λ = 2πℏ/mv = 2π/k
non-trivial eigenstates for general barriers

δ-function barrier: agile model for charge transport

Single parameter model (γ = strength parameter)

Vδ(x) =
ℏ2

2m
γδ(x) (1)

Simple analytic transmission probability

t(k) =
2k

2k + iγ
; D(k) = |t(k)|2 (2)

Time-dependent Gaussian wave packet
incident on δ-barrier (center)

Each line is different time slice; horizontal is position

Has application to specific problems of technological interest: Consider four examples
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1 Modeling photoemission from e.g., GaAs, includes high and thin barrier at surface attributed to a
submonolayer coating of cesium

2 Time evolution of Schrödinger equation with δ-function barrier: slow down of wave packet motion
measured by transmission and reflection delay (TARD) time (paradoxical for zero-thickness barrier)

3 I(V) characteristics of normal-superconducting (NS) point contacts: transition from metallic to
superconducting governed by γ; able to describe crossover from metallic to small-area
tunnel-junction behavior, address current and charge imbalance processes to describe quasiparticle
scattering at normal-superconducting (NS) interface. For normal state, transmission probability

D(kF) =
1

1 + Z2 Z ≡
γ

2kF
(3)

ℏkF : Fermi momentum; δ-function barrier = elastic scattering at NS interface; accounts for NS microconstriction (point contact)

4 Interest in conduction, transport, and/or thermal-field emission when barriers or wells have a time
dependent behavior: using steady state emission equations may be insufficient. Physics of tractable
models give means to examine methods argued to be appropriate for more complex configurations.
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Tunneling and reflection delay (TARD) model: trajectory interpretation akin to Bohm trajectories

Analytical model of Well + Barrier

V(x) =
ℏ2

2m

[
k2

wΘ(x2 − L2) + γδl(x)
]

(4)

where kw → ∞, Θ(s) is Heaviside step function,
and δl(x)→ δ-function in limit barrier width l→ 0.

Wave function Ψ(x, t) = ReiS

where R(x, t)2 ≡ ρ(x, t) = density from linear
superposition of ψn(x, t)

Quantum Potential Ω(x)

Ω(x, t) ≡ −
ℏ2

2mR(x, t)
d2

dx2 R(x, t) (5)

Width L of enclosing well modest to visualize differences due to δl(x)

Impact on time evolution examined & compared to δ-function limit

Ψ(x, t) =
∑

Cn ψn(x, t): exact time evolution possible for eigenstates

Finding ψn(x, t), t(k) requires exact kn for ± parity eigenstates
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ℏ2k2
o/2m: height of barrier in well

V(x) ≡
ℏ2γ

2m
δ(x) (6)

Gamow term θ(k) for E = ℏ2k2/2m:

θ(k) ≡ 2 l κ(k) ≡ 2 l
√

k2
o − k2 (7)

Gamow factor: if θ ≈ constant as ε→ 0,
then δ-function sequence demands

k2
o =

γL
ε2 (8)

Three regions are identified by

Region 1: −L/2 ≤ x ≤ −l/2
Region 3: l/2 ≤ x ≤ L/2
ψj(x) = Ajeiknx + Bje−iknx

Region 2: |x| ≤ l/2: ψ2(x) = A2eκx + B2e−κx

Connection between (Aj,Bj) determined by
standard Transfer Matrix Approach methods

Matrix methods

P(−l/2)|ξ1⟩ = T(−l/2)|ξ2⟩

T(l/2)|ξ2⟩ = P(l/2)|ξ3⟩
(9)

P(x) =
[

eiknx e−iknx

ikeiknx −ike−iknx

]
T(x) =

[
eκx e−κx

κeiκx −κe−κx

]
|ξj⟩ =

[
Aj

Bj

]
(10)
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kn determined by boundaries (Co chosen, and C′o is dependent)

A1e−iknL/2 + B1eiknL/2 = 0 =⇒ A1 = CoeiknL/2; B1 = −Coe−iknL/2

A3eiknL/2 + B3e−iknL/2 = 0 =⇒ A3 = C′oe−iknL/2; B3 = −C′oeiknL/2
(11)

Other Eigenstates: α = kn(L − l)/2

|ξ2⟩ =
iCo

κ

[
(kn cosα + κ sinα)ekl/2

(−kn cosα + κ sinα)e−kl/2

]
(12)

|ξ3⟩ =

[
e−iknlRk −iSk

iSk eiknlRk
†

]
|ξ1⟩ (13)

Rk = cosh(κl) − i
κ2 − k2

n

2κkn
sinh(κl); Sk =

k2
o

2κkn
sinh(κl)

|ξ2〉|ξ1〉 |ξ3〉

Two equations result: one for C′o and another for kn
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General Solution for finite-width center barrier, where κ2 = k2
o − k2

n

Equation for C′o
Sk = k2

o sinh(κl)/(2κkn)

C′o
Co
= iSk + eikn(L−l) (14)

Equation for kn

(must solve numerically)

tanh(knl) =
2κkn sin[kn(L − l)]

(κ2 − k2
n) cos[kn(L − l)] − k2

o
(15)

In the limit of vanishing barrier width, a delta-sequence becomes a delta function

liml→0 δl(x)→ δ(x)
tanh(κl)→ κl as l→ 0
with k2

o = γ/l, then Eq. (15) becomes

2kn sin(knL) − γ[1 − cos(knL)]→ 0 (16)

Eq. (16) satisfied for knL = 2πn (γ → ∞) or knL = πn (γ → 0), as expected for simple well with infinite walls
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General l > 0 case: kn found numerically
Rewrite Eq. (15) as

iCo cosh[κ(k)l]F (k) = 0 (17)

F (k) ≡ 2 sin[k(L − l)]

+
2k
κ(k)

cos[k(L − l)]

+
k2

o

kκ(k)
{1 − cos[k(L − l)]}

(18)

Eigen-energies such that F (kn) = 0: Let
kn = 2π(n + p)/L, n integer, |p| ≤ 1/2

F (k)→ sequence of curves for integer n
as a function of p
as ε→ 0, all p→ (0,−1/2) F (k) for k ≡ 2π(n + p)/L. Lines labeled by n
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Case A Low, wide V(x), ρ coupled through barrier region

Case B High, narrow V(x), ρ looks distinct, but is coupled

legend Even/odd = parity, sum = superposition of ψ±n (x)

ρ(x) =
nf∑
j=1

f (kj)
∣∣∣ψj(x)

∣∣∣2 (19)
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Findings

1 Wave functions for rectangular barrier in confining well examined and solved exactly
2 Limit of vanishing barrier width, eigen-momenta kn for ± parity ψn(k) converge in γ → ∞ limit
3 Change of tunneling time related to singularities in time-evolution of quantum potential Ω(x, t)
4 ρ(x) with metal-like weighting for shorter, wider barrier and taller, thinner barrier:

as ε→ 0, γ → ∞, then ρ(x)→ two adjacent wells, but ψ±n (x) span both wells, are coupled: Ω(x) for
each case is finite near origin and allows transfer of energetic Bohmian trajectories.

Future Work

Model / Methodology suitable for

Develop extension of Z-parameter characterization of NS interfaces proposed by Blonder, et al.

Provide analytic framework for examining time dependent potential barrier on evolution of electron
density (superposition of wave functions) in quantum wells and electron emission sources
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