A Delta Barrier In a Well And Its Generalization For Emission Studies

³Naval Research Laboratory, Washington, DC; ⁴Towson University, MD

Day 2 - 1:55-2:20 PM Wednesday Oct 4, 2023 Photocathode Physics for Photoinjectors Workshop 2023 Oct. 2-5, 2023 Charles B. Wang Center (Stony Brook University)

Introduction	
Eigenvalues	
Simulations	

Background Delta Function Model Modification to Delta Model

Sections Outline

Introduction

- Background
- Delta Function Model
- Modification to Delta Model

Eigenvalues

- Delta Function Barrier
- MIM Barrier
- Eigenstates

3 Simulations

- Time Evolution
- Quantum Potential
- Density in Split Well

		Introduction	Background
Leidos NRI	AFRL U. Towson	Eigenvalues	
		Simulations	Modification to Delta Model

BACKGROUND

DISTRIBUTION STATEMENT A, Approved for public release, distribution is unlimited.

Background Delta Function Model Modification to Delta Model

Need for δ -function Model

Quantum Mechanics poses challenges to simulating ultra-fast and ultra-small emission conditions:

- e^- tunneling into a nanogap \neq instantaneous
- e^- have a wave-behavior $\lambda = 2\pi\hbar/mv = 2\pi/k$
- non-trivial eigenstates for general barriers

$\delta\text{-function barrier: agile model for charge transport}$

• Single parameter model (γ = strength parameter)

$$V_{\delta}(x) = \frac{\hbar^2}{2m} \gamma \delta(x) \tag{1}$$

• Simple analytic transmission probability

$$t(k) = \frac{2k}{2k+i\gamma}; \ D(k) = |t(k)|^2$$
 (2)

Time-dependent Gaussian wave packet incident on δ -barrier (center)

Has application to specific problems of technological interest: Consider four examples

Applications of δ -function Model

- Modeling photoemission from e.g., GaAs, includes high and thin barrier at surface attributed to a submonolayer coating of cesium
- Time evolution of Schrödinger equation with δ-function barrier: slow down of wave packet motion measured by transmission and reflection delay (TARD) time (paradoxical for zero-thickness barrier)
- I(V) characteristics of normal-superconducting (NS) point contacts: transition from metallic to superconducting governed by γ; able to describe crossover from metallic to small-area tunnel-junction behavior, address current and charge imbalance processes to describe quasiparticle scattering at normal-superconducting (NS) interface. For normal state, transmission probability

$$D(k_F) = \frac{1}{1+Z^2} \qquad Z \equiv \frac{\gamma}{2k_F}$$
(3)

 $\hbar k_F$: Fermi momentum; δ -function barrier = elastic scattering at NS interface; accounts for NS microconstriction (point contact)

Interest in conduction, transport, and/or thermal-field emission when barriers or wells have a time dependent behavior: using steady state emission equations may be insufficient. Physics of tractable models give means to examine methods argued to be appropriate for more complex configurations.

Leidos AFRL NRL U. Towson Introduction Eigenvalues Simulations

Background Delta Function Model Modification to Delta Model

Modification of δ -function Model: Place in Well

Tunneling and reflection delay (TARD) model: trajectory interpretation akin to Bohm trajectories

Analytical model of Well + Barrier

$$V(x) = \frac{\hbar^2}{2m} \left[k_w^2 \Theta(x^2 - L^2) + \gamma \delta_l(x) \right]$$
(4)

where $k_w \to \infty$, $\Theta(s)$ is Heaviside step function, and $\delta_l(x) \to \delta$ -function in limit barrier width $l \to 0$. Wave function $\Psi(x, t) = Re^{iS}$ where $R(x, t)^2 \equiv \rho(x, t) =$ density from linear superposition of $\psi_n(x, t)$

Quantum Potential $\Omega(x)$

$$\Omega(x,t) \equiv -\frac{\hbar^2}{2mR(x,t)} \frac{d^2}{dx^2} R(x,t)$$
 (5)

- Width *L* of enclosing well modest to visualize differences due to $\delta_l(x)$
- Impact on time evolution examined & compared to δ -function limit
- $\Psi(x, t) = \sum C_n \psi_n(x, t)$: exact time evolution possible for eigenstates
- Finding $\psi_n(x, t), t(k)$ requires exact k_n for \pm parity eigenstates

Introduction	
Eigenvalues	
Simulations	

Sections Outline

Introduction

- Background
- Delta Function Model
- Modification to Delta Model

2 Eigenvalues

- Delta Function Barrier
- MIM Barrier
- Eigenstates

3 Simulations

- Time Evolution
- Quantum Potential
- Density in Split Well

		Introduction	Delta Function Barrier
Leidos	AFRL	Eigenvalues	
NRL	U. Towson	Simulations	

PARAMETERIZATION

• $\hbar^2 k_o^2/2m$: height of barrier in well

$$V(x) \equiv \frac{\hbar^2 \gamma}{2m} \delta(x)$$
 (6)

• Gamow term $\theta(k)$ for $E = \hbar^2 k^2 / 2m$:

$$\theta(k) \equiv 2 \, l \, \kappa(k) \equiv 2 \, l \, \sqrt{k_o^2 - k^2} \qquad (7)$$

Gamow factor: if $\theta \approx \text{constant}$ as $\varepsilon \to 0$, then δ -function sequence demands

$$k_o^2 = \frac{\gamma L}{\varepsilon^2} \tag{8}$$

Three regions are identified by

- Region 1: $-L/2 \le x \le -l/2$ Region 3: $l/2 \le x \le L/2$ $\psi_j(x) = A_j e^{ik_n x} + B_j e^{-ik_n x}$
- Region 2: $|x| \le l/2$: $\psi_2(x) = A_2 e^{\kappa x} + B_2 e^{-\kappa x}$
- Connection between (A_j, B_j) determined by standard Transfer Matrix Approach methods

Matrix methods

$$\mathbb{P}(-l/2)|\xi_1\rangle = \mathbb{T}(-l/2)|\xi_2\rangle$$

$$\mathbb{T}(l/2)|\xi_2\rangle = \mathbb{P}(l/2)|\xi_3\rangle$$
(9)

$$\mathbb{P}(x) = \begin{bmatrix} e^{ik_n x} & e^{-ik_n x} \\ ike^{ik_n x} & -ike^{-ik_n x} \end{bmatrix} \qquad \mathbb{T}(x) = \begin{bmatrix} e^{\kappa x} & e^{-\kappa x} \\ \kappa e^{i\kappa x} & -\kappa e^{-\kappa x} \end{bmatrix} \qquad |\xi_j\rangle = \begin{bmatrix} A_j \\ B_j \end{bmatrix}$$
(10)

		Introduction	Delta Function Barrier
Leidos	AFRL	Eigenvalues	
NRL	U. Iowson	Simulations	

MATRIX SOLUTION I

 k_n determined by boundaries (C_o chosen, and C'_o is dependent)

$$A_{1}e^{-ik_{n}L/2} + B_{1}e^{ik_{n}L/2} = 0 \implies A_{1} = C_{o}e^{ik_{n}L/2}; \quad B_{1} = -C_{o}e^{-ik_{n}L/2}$$

$$A_{3}e^{ik_{n}L/2} + B_{3}e^{-ik_{n}L/2} = 0 \implies A_{3} = C_{o}'e^{-ik_{n}L/2}; \quad B_{3} = -C_{o}'e^{ik_{n}L/2}$$
(11)

Other Eigenstates: $\alpha = k_n(L-l)/2$

$$|\xi_{2}\rangle = \frac{iC_{o}}{\kappa} \begin{bmatrix} (k_{n}\cos\alpha + \kappa\sin\alpha)e^{kl/2} \\ (-k_{n}\cos\alpha + \kappa\sin\alpha)e^{-kl/2} \end{bmatrix}$$
(12)
$$|\xi_{3}\rangle = \begin{bmatrix} e^{-ik_{n}l}R_{k} & -iS_{k} \\ iS_{k} & e^{ik_{n}l}R_{k}^{\dagger} \end{bmatrix} |\xi_{1}\rangle$$
(13)

$$R_k = \cosh(\kappa l) - i \frac{\kappa^2 - k_n^2}{2\kappa k_n} \sinh(\kappa l); \quad S_k = \frac{k_o^2}{2\kappa k_n} \sinh(\kappa l)$$

Two equations result: one for C'_{a} and another for k_{a}

	AFRL
NRL	U. Towson

Introduction Delta Function Barrier Eigenvalues MIM Barrier Simulations Eigenstates

MATRIX SOLUTION II

General Solution for finite-width center barrier, where $\kappa^2 = k_o^2 - k_n^2$

In the limit of vanishing barrier width, a delta-sequence becomes a delta function

- $\lim_{l\to 0} \frac{\delta_l(x)}{\delta(x)} \to \delta(x)$
- $tanh(\kappa l) \rightarrow \kappa l as l \rightarrow 0$
- with $k_o^2 = \gamma/l$, then Eq. (15) becomes

$$2k_n \sin(k_n L) - \gamma [1 - \cos(k_n L)] \to 0$$
(16)

Eq. (16) satisfied for $k_n L = 2\pi n$ ($\gamma \to \infty$) or $k_n L = \pi n$ ($\gamma \to 0$), as expected for simple well with infinite walls

Leidos AFRL NRL U. Towson
 Introduction
 Delta Function

 Eigenvalues
 MIM Barrier

 Simulations
 Eigenstates

Rectangular (MIM) Barrier

General l > 0 case: k_n found numerically Rewrite Eq. (15) as

$$iC_o \cosh[\kappa(k)l]\mathcal{F}(k) = 0 \tag{17}$$

$$\mathcal{F}(k) \equiv 2 \sin[k(L-l)] + \frac{2k}{\kappa(k)} \cos[k(L-l)] + \frac{k_o^2}{k\kappa(k)} \{1 - \cos[k(L-l)]\}$$
(18)

- Eigen-energies such that $\mathcal{F}(k_n) = 0$: Let $k_n = 2\pi(n+p)/L$, *n* integer, $|p| \le 1/2$
- *F*(k) → sequence of curves for integer n
 as a function of p
 as ε → 0, all p → (0, -1/2)

 $\mathcal{F}(k)$ for $k \equiv 2\pi(n+p)/L$. Lines labeled by n

Leidos	AFRL
NRL	U. Towson

Delta Function Barrier MIM Barrier Eigenstates

GENERAL WAVE FUNCTIONS

- $\mathcal{F}(k_n < k_o) = 0$ as function of *n*
- open symbols are larger root (p₊ ≈ 0) closed are smaller root (p₋ ≤ -0.5)
- Legend: $(p_{\pm}: \gamma, \varepsilon)$

- $\psi_k(x)$ for $\gamma = 3$ and n = 1
- Shaded region is tunneling barrier Solid / orange: $\varepsilon = 0.3$; Dashed / blue: $\varepsilon = 0.2$
- p_+ = Antisymmetric; p_- = Symmetric

eidos	AFRL
IRL	U. Towson

Eigenvalues	
Simulations	

Sections Outline

Introduction

- Background
- Delta Function Model
- Modification to Delta Model

2 Eigenvalue

- Delta Function Barrier
- MIM Barrier
- Eigenstates

- Time Evolution
- Quantum Potential
- Density in Split Well

Leidos	AFRL
NRL	U. Towson

Time Evolution Quantum Potential Density in Split Wel

EXACT EVOLUTION OF EIGENSTATES

Time evolution of probability density using solid curve $\psi_n(k)$: $\varepsilon = 0.3$

Time evolution of probability density using dashed curve $\psi_n(k)$: $\varepsilon = 0.2$

Leidos	AFRL
	U. Towson

Eigenvalues	Quantum Potential
Simulations	

COMPARISON TO DELAY TIMES

Quantum potential $\Omega(x, t)$ for $\varepsilon = 0.3$

Quantum potential $\Omega(x, t)$ for $\varepsilon = 0.2$

Leidos AFRL NRL U. Towson Introduction Tim Eigenvalues Qua Simulations Der

Time Evolution Quantum Potential Density in Split Well

DENSITY PROFILES

Case A Low, wide V(x), ρ coupled through barrier region Case B High, narrow V(x), ρ looks distinct, but is coupled legend Even/odd = parity, sum = superposition of $\psi_n^{\pm}(x)$

$$\rho(x) = \sum_{j=1}^{n_f} f(k_j) \left| \psi_j(x) \right|^2$$
(19)

Superposition of $n_f = 6$ lowest $\psi_n(x)$ with metal-like weighting $f(k_n) \propto n_f^2 - n^2$

CONCLUDING REMARKS

Findings

- Wave functions for rectangular barrier in confining well examined and solved exactly
- Imit of vanishing barrier width, eigen-momenta k_n for \pm parity $\psi_n(k)$ converge in $\gamma \to \infty$ limit
- **O** Change of tunneling time related to singularities in time-evolution of quantum potential $\Omega(x, t)$
- ρ(x) with metal-like weighting for shorter, wider barrier and taller, thinner barrier:
 as ε → 0, γ → ∞, then ρ(x) → two adjacent wells, but ψ[±]_n(x) span both wells, are coupled: Ω(x) for
 each case is finite near origin and allows transfer of energetic Bohmian trajectories.

Future Work

Model / Methodology suitable for

- Develop extension of Z-parameter characterization of NS interfaces proposed by Blonder, et al.
- Provide analytic framework for examining time dependent potential barrier on evolution of electron density (superposition of wave functions) in quantum wells and electron emission sources