Plasmonic vortices as sources of angular momentum electron beams - and other good things

Yanan Dai (SUSTEC) Atreyie Ghosh Sena Yang Robin Huang (Tsinghua U)

P3 Oct. 5, 2023

The University of Pittsburgh and IQ Initiative

http://ultrafast.phyast.pitt.edu

Floquet engineering of nonlinear photoemission fields. Vectorial electromagnetic fields beyond Maxwell? Ultrafast photoelectron emission microscopy - how to see light. Nanofemto electron imaging the spin-orbit interaction of light. Vortices - topology, parity-time symmetry, and arrays. Magnetoelectric $(E \cdot B)$ interaction.

Floquet engineering of metal surface states

mPP intensity

Delay time, τ (fs)

Magnetoelectric effect of pseudoscalar E·B •Topological field theory relates $E \cdot B \neq 0$ to magnetic monopoles and axion

- quasiparticles
- symmetry is preserved

Maxwell's equations when $E \cdot B \neq 0$

Name	Equations		
Gauss's law	$ abla \cdot \left({f E} - \kappa heta c {f B} ight) = { ho_e \over arepsilon_0}$		
Gauss's law for magnetism	$ abla \cdot (c {f B} + \kappa heta {f E}) = c \mu_0 ho_m$		
Faraday's law	$ abla imes (-{f E} + \kappa hetac{f B}) = \partial_{ct}(c{f B} + \kappa heta{f E}) + \mu_0{f J}_m$		
Ampère–Maxwell law	$ abla imes (c {f B} + \kappa heta {f E}) = \partial_{ct} ({f E} - \kappa heta c {f B}) + c \mu_0 {f J}_e$		
Axion law	$ig(\Box + m_{ m A}^2ig) heta = -\kappa{f E}\cdot{f B}$		

		$\mathbf{\overline{\mathbf{v}}}$				
$\begin{bmatrix} \mathbf{E}' \end{bmatrix}$		$ig[\mathbf{E} - \kappa heta c \mathbf{B} ig]$	1	$\cos \xi$	$\sin \xi$	$\begin{bmatrix} \mathbf{E} \end{bmatrix}$
$\lfloor c \mathbf{B}' \rfloor$	_	$\left\lfloor \kappa heta {f E} + c {f B} ight floor$	$= \frac{1}{\cos \xi}$	$-\sin\xi$	$\cos \xi$	$c\mathbf{B}$

•under this condition H induces polarization P, and D magnetization M • $E \cdot B \neq 0$ is a material property when \mathscr{P} and \mathscr{T} are anti-symmetric, but \mathscr{PT}

Magnetoelectric effect

Coherent magnetoelectric E·B interaction

electric field of a positive charge

Magnetic Field radial

magnetic field of a current in a wire

Vectorial properties of optical vortex ligh	Spin angula momentum (S rotating polariza	
Maxwell's equations very	Orbital angu momentum (C rotating wavefr	
$ abla \cdot \mathbf{E} = rac{ ho}{arepsilon_0}$ versatile, but		
$ abla \cdot {f B} = 0$	Conservatio angular mome J=L+S Spin-orbi interaction of	
$egin{aligned} abla imes \mathbf{E} &= -rac{\partial \mathbf{B}}{\partial t} \end{aligned}$		
$ abla imes {f B} = \mu_0 \left({f J} + arepsilon_0 {f \overline B} \over \partial t} ight)$		

Degrees of freedom of light: Amplitude, phase, polarization, spin and orbital angular momentum with nonseparable phase and polarization wavefronts.

CHEMICAL REVIEWS

120, 6247-6287 (2020).

Poincaré sphere

Stokes parameters

-450.

rhcp

 2ω

 2α

+45°

ESPP

Single Pulse Excitation

Standing Wave

Single Pulse Excitation

ase Jarity

Locating Meron (half-skyrmion) with PEEM

 $F_{HS} \sim \iint \left(I_x v_x + I_y v_y + I_t \right) dx dy$

Nature **588**, 616 (2020) Nature Reviews Physics 4, 562 (2022)

Meron

L-line map

PEEM Image

FT analysis

Maxwell

 $|E_{\theta}|$

 $|H_{\theta}|$

Eye of the plasmonic vortex

 $|E_z|$

Magnetoelectric field

Conclusions

- We have demonstrated imaging of vectorial plasmonic fields on <λ/2 length scale with attosecond precision
 This enables study of topological spin texturing by spin-orbit interaction of light. The textures are stable on second to attosecond pulse duration time.
 we can study spin-charge entanglement, 𝒮𝔅 symmetry breaking, nonreciprocal and non-Hermitian physics, in trivial and bianisotropeic
 - reciprocal and non-Hermitian phys condensed matter
- The structured fields can induce Poincaré dressing of topologically trivial matter (*Nature Reviews Physics* 4, 562 (2022)
 Where did the angular momentum go?
- Where did the angular momentum go?
 Can we use structured light to probe axion physics in topological matter or even cosmos?

