Shower Shape Analysis of Calorimeter Insert First Test Beam Data

Weibin Zhang

2023-06-07

Introduction

- Proof of concept prototype: 10 layers, 4 scintillator tile cells per layer
- Beam test in Hall D at JLab last year
- $\sim 4~\text{GeV}$ positrons

Prototype

Geometry in Simulation

- 10 layers
- 4 layers of square cells + 6 layers of hexagonal cells
- absorber + scintillator cover + ESR foil + scintillator tile + frame + ESR foil + PCB

Data Characteristics: Energy Weighted Layer X

- $x_{\text{layer}} = \frac{\sum_{i} x_i E_i}{\sum_{i} E_i}$ where i loops over all hit in a layer
- Cell 1 (layer 0) and cell 7 (layer 1) are blocked
- Almost symmetric distribution \rightarrow beam is centered in the X direction
- Most showers are limited to only 1 cell in each layer

Data Characteristics: Energy Weight Layer Y

•
$$y_{\text{layer}} = \frac{\sum_{i} y_i E_i}{\sum_{i} E_i}$$

• Asymmetric distribution \rightarrow beam is shifted in the Y direction

Data Characteristics: Energy Weight Layer X/Y Mean

- A slope (-1.465 mm/2.91 cm \sim -0.05) is seen in the Y direction
 - The incoming beam is slightly tilted in the Y direction
 - The large shift in the Y direction results in some showered electrons/photons escape from the top, leading to a slope in the Y direction

Simulation With Large Y Shift

- The y shift does contribute to the y slope
- The slope caused by the y shift is smaller than what is shown in data, which means there are other contributions: the beam is tilted

A Good Model: Beam Configuration in the Simulation

- Beam is along Z
- -1 mm shift in x
- θ ∈ [0.04, 0.044]
- 225 mm shift in y (the beam source is 5 m away from the prototype)
- $\phi \in [-110^{\circ}, -70^{\circ}]$

Comparison: Energy Weighted Layer X

Comparison: Energy Weighted Layer Y

Comparison: Energy Weighted Layer X/Y Mean

Comparison: Energy Weighted Event X/Y

• $x_{\text{event}} = \frac{\sum_i x_i E_i}{\sum_i E_i}$ where i loops over all hits in a event; same definition for y_{event}

Comparison: Layer Energy

• $E_{\text{layer}} = \sum_{i} E_{i}$ where i loops over all hits in a layer

Comparison: Event Energy

Event energy (sim vs data)

• $E_{\text{layer}} = \sum_{i} E_{i}$ where i loops over all hits in a event

Summary

- Successfully simulate the prototype and the beam conditions, achieving good agreement between data and simulation
- The Calorimeter Insert is able to provide the angle information of the incoming beams

Backup

Comparison: Cell Energy

