LFHCAL software update

Status of MC/reco associations

- With single particle simulations, association of a specific truth particle with each cluster is not important
- As of April, the MC association mechanism was completely broken
 - The link variables existed in the ElCrecon output but the fields (simID and recID) were garbage
- Nathan Brei walked me through a few fixes to the process, which I committed, but even that required changes to the algorithm model that were not ready yet
 - Cue forward 3 months :)
- Now when I try running single (& double) particle events, I see that the mechanism is working

Example

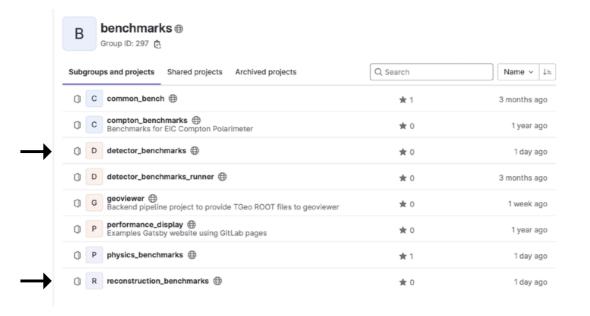
Simple 2π particle gun (20 GeV, 2π, θ=7-37 degrees)

```
root [22] events-
>Scan("MCParticles.momentum.z:MCParticles.momentum.x:MCParticles.momentum.y","",1,4)
*********************
       * Instance * MCParticl * MCParticl * MCParticl *
**********************
              0 * 19.296258 * -0.477318 * -5.237033 *
              1 * 19.450958 * -4.626739 * -0.503520 *
***********************
     "simID" PZ
                          px
```

 We now see that there are multiple clusters and each one gets associated with each truth particle

```
root [20] events-
>Scan("LFHCALClusters.energy:LFHCALClusters.position.z:LFHCALClusters.position.x:LFHCALClusters.p
osition.y:LFHCALClusterAssociations.simID:LFHCALClusterAssociations.recID","",",1,4)
* Instance * LFHCALClu * LFHCALClu * LFHCALClu * LFHCALClu * LFHCALClu * LFHCALClu *
0 * 16.337261 * 3966.3288 * -98.38687 * -1066.359 *
            1 * 15.361476 * 4395.7490 * -1034.903 * -114.1571 *
            2 * 0.3571598 * 3696.1523 * -873.5999 * -74.05000 *
            3 * 0.1818682 * 4208.7998 * -769.2000 * -74.05000 *
```

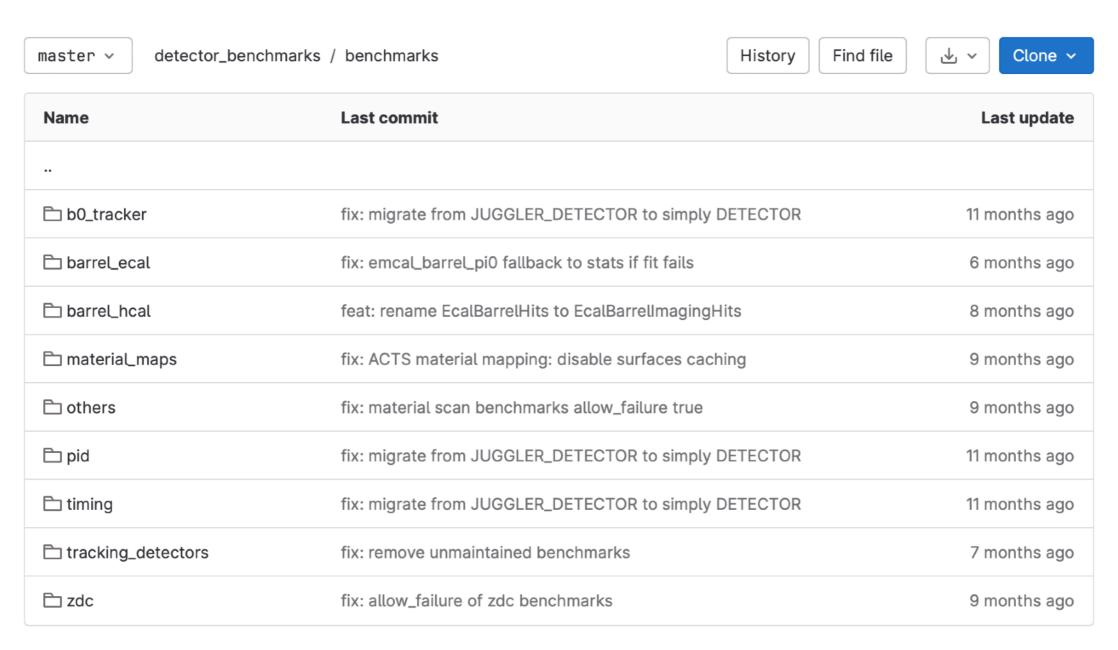
Clear correspondence of cluster position and truth momentum 👍



Validation procedures

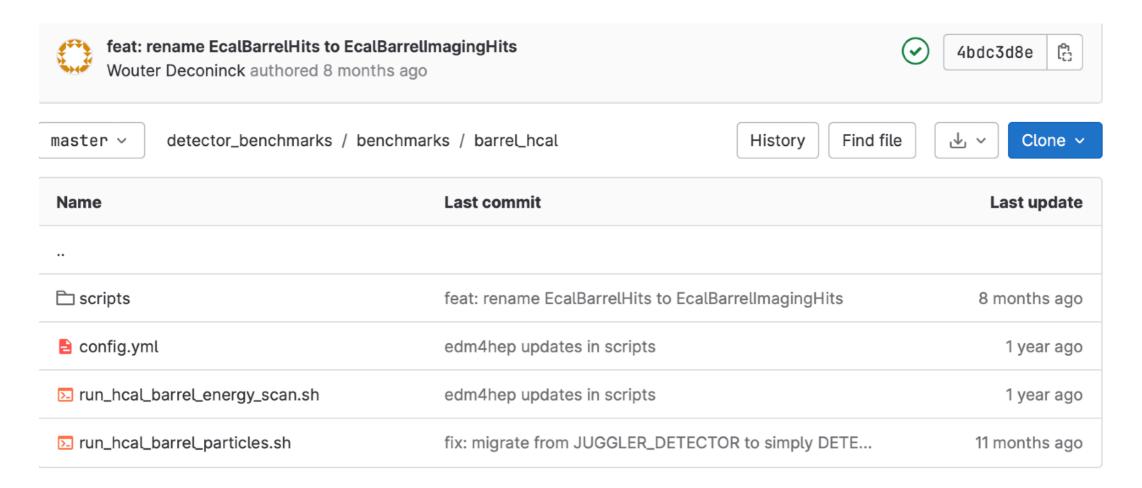
- With the most basic functionality coming into focus, validation becomes crucial, ideally in the CI model
- Have been learning about the developments in the ePIC CI system from Dima Kalinkin
 - I was looking in eic/epic and eic/ElCrecon for this functionality and was in the 100% wrong place
 - He spoke on this last week: https://indico.bnl.gov/event/20069/
- The system (as most of you know) is hosted on eicweb at ANL
 - https://eicweb.phy.anl.gov/EIC/benchmarks

Detector benchmarks


- https://eicweb.phy.anl.gov/EIC/benchmarks/ detector_benchmarks
- Intended as very low-level (from the README)
 - "Detector benchmarks are meant to test for regressions in individual detector subsystems. The analysis is meant to avoid a reconstruction step. So this precludes using juggler for processing the events"

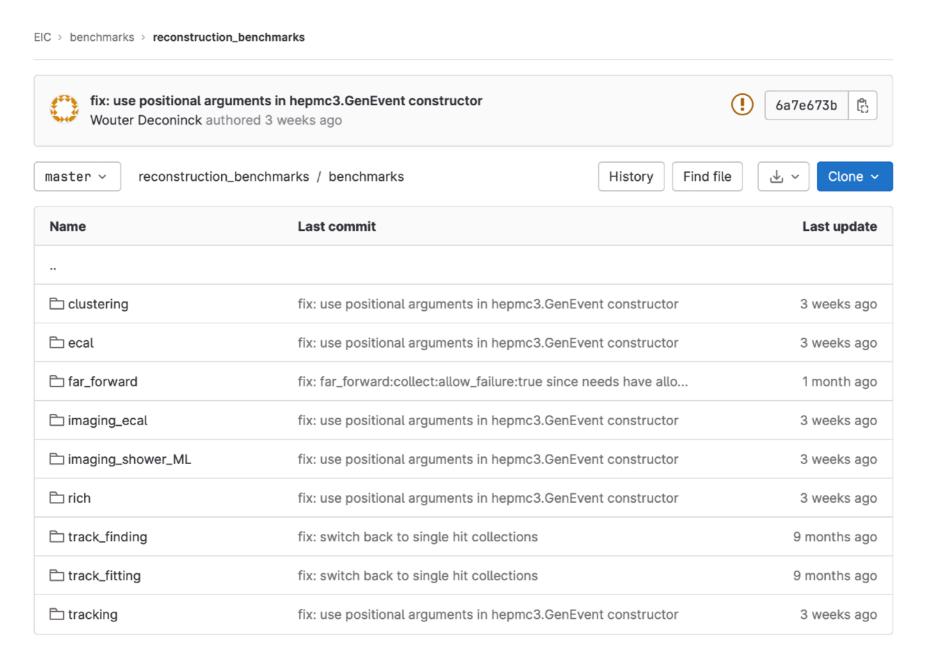
What is there for detectors?

Some subsystems are present, but old (and not LFHCAL)


https://eicweb.phy.anl.gov/EIC/benchmarks/detector_benchmarks/-/tree/master/benchmarks

Structure of detector benchmarks

- Scripts to generate samples of single particles, and to automate energy scans
- config.yml to run the full gamut of particle species/energies


config.yml

```
master ~
             detector_benchmarks / benchmarks / barrel_hcal / config.yml
                                                                              Find file
                                                                                                  History
                                                                                                             Permalink
config.yml [ 3.88 KiB
                                                                                   Open in Web IDE
            sim:hcal_barrel_pions:
              extends: .det_benchmark
              stage: simulate
                - bash benchmarks/barrel_hcal/run_hcal_barrel_particles.sh piplus
                - bash benchmarks/barrel_hcal/run_hcal_barrel_particles.sh piminus
            sim:hcal_barrel_kaons:
              extends: .det_benchmark
       10
              stage: simulate
              script:
       11
       12
               - bash benchmarks/barrel_hcal/run_hcal_barrel_particles.sh kplus
       13
                - bash benchmarks/barrel_hcal/run_hcal_barrel_particles.sh kminus
       14
                - bash benchmarks/barrel_hcal/run_hcal_barrel_particles.sh kshort
       15
                - bash benchmarks/barrel_hcal/run_hcal_barrel_particles.sh klong
       16
       17
            sim:hcal_barrel_muons:
             extends: .det_benchmark
       18
       19
              stage: simulate
       20
              script:
       21
                - bash benchmarks/barrel_hcal/run_hcal_barrel_energy_scan.sh muon
       22
                - bash benchmarks/barrel_hcal/run_hcal_barrel_particles.sh muon
       23
       24
            sim:hcal_barrel_antimuons:
       25
              extends: .det_benchmark
       26
              stage: simulate
       27
              script:
       28
                - bash benchmarks/barrel_hcal/run_hcal_barrel_energy_scan.sh antimuon
       29
                - bash benchmarks/barrel_hcal/run_hcal_barrel_particles.sh antimuon
       30
       31
            sim:hcal_barrel_protons:
       32
              extends: .det_benchmark
       33
              stage: simulate
       34
              script:
       35
                - bash benchmarks/barrel_hcal/run_hcal_barrel_energy_scan.sh proton
       36
                - bash benchmarks/barrel_hcal/run_hcal_barrel_particles.sh proton
       37
       38
            bench:hcal_barrel_protons:
       39
              extends: .det_benchmark
              stage: henchmarks
```


Reconstruction benchmarks

Clearly active work going on, but need to introduce forward calo. Directories contain python scripts that generate particles, run ddsim, and analyze podio output...but not running ElCrecon AFAICT

Next steps: lots to do!

Work on the reconstruction itself

- Generating relevant truth samples
 - single particle
 - multi particle
 - full DIS
- Standalone LFHCAL clustering, EM+HCAL, full pflow.

Work on the CI validation

- Automating important use cases
- Developing references
- Integrating into detector benchmarks
- Integrating into reconstruction benchmarks

