
Normally when someone shows the ePIC detector, they'll show you something like this -

Far Backward Region

- Relatively simple, but very important, set of detectors systems in this region
 - Luminosity monitors
 - Low Q^2 tagger

Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Far Backward - Luminosity Monitors

- Luminosity measurements provide the required normalisation for all physics studies.
 - Absolute cross sections
 - Combining run periods
 - Asymmetry measurements
 - Relative luminosity of different bunch crossings
- Require accuracy on the order of ~1%

Relative luminosity $> 10^{-4}$ precision

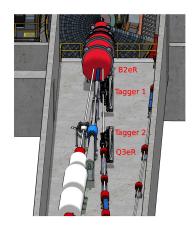
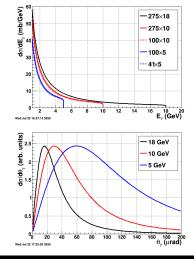


Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023


Luminosity Monitors - Measurements

 Use bremsstrahlung process to measure luminosity

$$e + p \rightarrow e + p + \gamma$$

 $e + A \rightarrow e + A + \gamma$

- \circ σ known precisely from QED
- γ strongly peaked in forward (e^- beam) direction
- Two luminosity monitor systems
 - Direct photon detector (High rate calorimeter)
 - Pair spectrometer

Figures - EIC Yellow Report - Section 11.7.1, p575

Direct Photon Detector

- In principle, direct bremmstrahlung photon measurement straightforward
- Could simply count photons above some energy cutoff
- Only possible at low luminosities
- At EIC luminosity, expect large number of photons
- At $\mathcal{L} \approx 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-}$, expect about 23 hard photons per bunch crossing
- Two separate direct photon detectors proposed
 - \bullet One with excellent energy resolution, used only for special luminosity runs at low ${\cal L}$
 - One capable of withstanding > 1 GHz rates, used for monitoring during nominal running

Direct Photon Detector

- Use thick absorbers/filters to attenuate synchrotron radiation
- Studies underway to quantify dosage for photon detectors
- Latest design, fiber based calorimeter

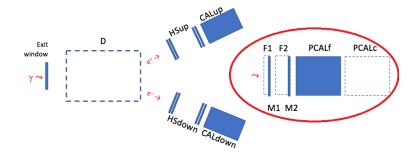


Figure - J. Nam, Temple University, ePIC Collaboration meeting January 2023

Pair Spectrometer

- Pair spectrometer outside of main synchrotron radiation fan
- Some bremmstrahlung photons converted to e^+e^- pairs

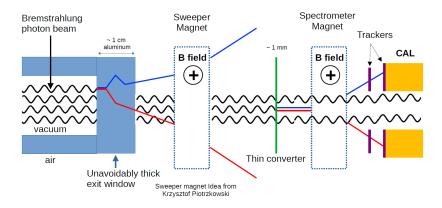


Figure - D. Gangadharan, University of Houston

Pair Spectrometer

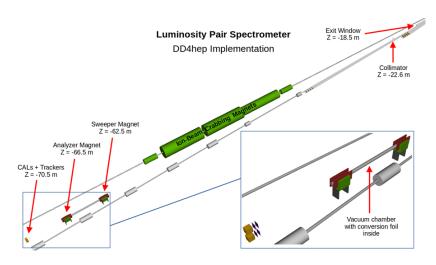


Figure - D. Gangadharan, University of Houston

Pair Spectrometer

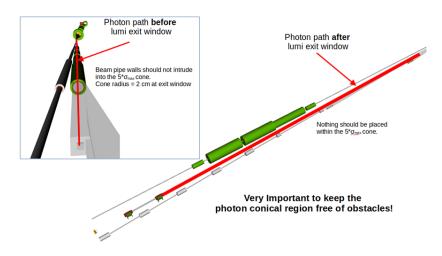
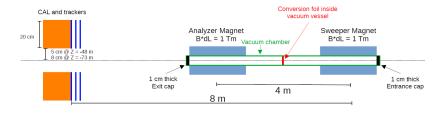
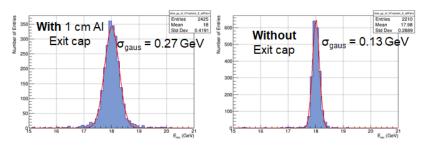


Figure - D. Gangadharan, University of Houston

Pair Spectrometer - Overview

- \bullet Based upon recent feedback from magnet designers, 1 ${\rm Tm}$ fields and 15 ${\rm cm}$ bore diameter possible
- \bullet New baseline design with sweeper magnet \sim 65 m from IP

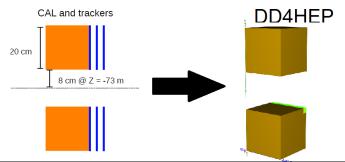



Figure - D. Gangadharan, University of Houston

Pair Spectrometer - General Requirements

- Exit window and conversion foils
 - Well known composition and thickness of exit window and conversion foils
 - Foil needs to withstand heat load!
- Sweeper and analyser magnets
 - ullet $BdLpprox 1~{
 m Tm}$, compact system, $\sim 15~{
 m cm}$ bore diameter
 - Allows placement far from central region
 - Small fringe fields
 - Good vacuum for minimal air conversions
- Calorimeter
 - $17\%/\sqrt{E}$ energy resolution sufficient
 - Based upon ZEUS experience
 - Segmented readout, disentangle pileup
 - $\circ \sim$ ns timing resolution, bunch-by bunch ${\cal L}$

Pair Spectrometer - Trackers


- ullet Trackers could be used to obtain $\sim 1\%$ energy resolution
- Resolution strongly affected by end cap thickness and material
- Excellent tracking possible
 - Excellent energy resolution
 - Excellent pointing resolution
- Still need to choose technology, same as Low Q^2 tagger?

Figures - D. Gangadharan, University of Houston

Pair Spectrometer - Calorimeters

- Calorimeter is fairly simple design
 - ${
 m o}~{
 m Two} \sim 20 {
 m cm}^3~{
 m calorimeters}$
 - Vertically separated from direct γ , $\pm 5\sigma$
- Current <u>baseline</u> design in ePIC DD4HEP simulation uses segmented PbWO₄ calorimeters
- See talk by Aranya Giri at 11:40 on 23/07/24 for more info and the latest on simulations!

Pair Spectrometer - Calorimeters, WSciFi

- Updated design tungsten scintillating fiber calorimeter(WSciFi)
 - W powder and epoxy with embedded fiber grid
- Can tweak volumetric ratio between W/SciFi to adjust many parameters
 - Radiation length
 - Molière radius
 - Sampling fraction
 - Energy resolution
- Studying new XY fiber design
 - 3D shower profile possible
 - Potential AI/ML applications

Figures - A. Giri, University of Houston

Pair Spectrometer - Calorimeters, WSciFi

- Preliminary design ideas based upon sPHENIX calorimeters
- Recent R&D work by O.Tsai
 - o doi:10.1088/1742-6596/404/1/012023
- Learn from this for ePIC lumical construction

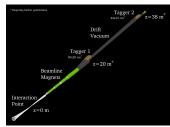
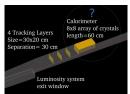
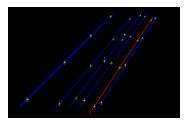
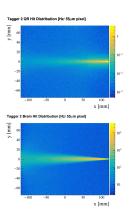




Figure - doi:10.1088/1742-6596/404/1/012023

Low Q^2 Tagger

- Quasi-real tagging (low Q^2), $\theta_e < 10 \text{ mrad}$
- Detector goals
 - Large acceptance (> 10%)
 - Good energy resolution ≤ 1%
 - Reconstruction of scattering plane (polarisation)
- Two in-vacuum tagger modules
- Timepix4+SPIDR4 detectors
- Investigating neural networks for kinematic reconstruction




Figures - S.Gardner, University of Glasgow, ePIC Collaboration meeting January 2023

Low Q^2 Tagger

- Typical bunch crossings at 18x275
 - \sim 12 electrons
 - \circ ~7 accepted by tagger 2
 - 95% reconstruction efficiency

- Quasi-real e⁻ scattering event amongst bremmstrahlung e⁻
- Max rate per pixel ~20 kHz

Figures - S.Gardner, University of Glasgow, ePIC Collaboration meeting January 2023

Far Backwards - Physics

- Far backward detectors also enable some unique physics measurements
- Meson spectroscopy
 - \circ J/ ψ , XY etc
- Example final state
 - \circ redJ/ ψ + π^+ + π^- + e' and nucleons
- Events at both low Q² and t
- $\int \mathcal{L}$ at EIC very high
 - Study rare exclusive processes, not accessible at HERA

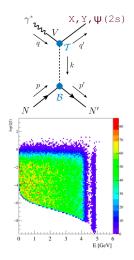
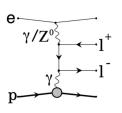



Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Far Backwards - Physics

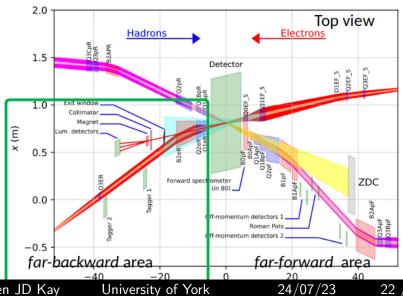
- FB taggers detect e'
 - $\pi \theta_e < 1 \text{ mrad}$
- Scattered proton in FF
 - \bullet $\theta_p <$ 6 mrad
- All lepton pairs, e^{\pm} , μ^{\pm} , τ^{\pm} can reach central detector
- Background for J/ψ or v production
- \bullet μ^{\pm} sensitive to proton charge radius
- Opportunity for data-driven calibrations with two-photon exclusive processes

Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Summary

- ePIC is more than just the central detector!
- Far-backward region critical for luminosity monitoring
 - Needed for absolute cross sections
 - Combining run periods
- Pair spectrometer design maturing
 - Upgraded design in simulation, advanced testing in progress
 - Preliminary design and testing of XY WSciFi calorimeter expected at York this year
- Low Q^2 tagger design also converging
- Far-backward detectors enable unique physics measurements

Thanks for listening, any questions?



Science and Technology Facilities Council

stephen.kay@york.ac.uk

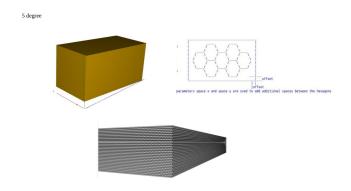
IP6 Overview

Stephen JD Kay

University of York

22 / 21

Luminosity Requirements and Systematics

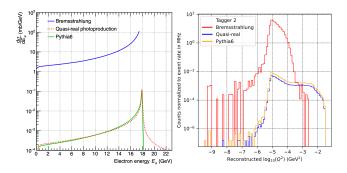

- Yellow Report Requirements
 - \circ \sim 1% uncertainty for absolute luminosity
 - Less than 10^{-4} for relative luminosity
- Compare to Zeus lumi systematics

Component	Sub-Component systematics	ePIC Improvements
Acceptance (1.6%: Total)	1.0%: Aperture and detector alignment	5σ obstruction free aperture. Low lumi runs with coincidences of low-Q ² tagger and pair spec
	1.2%: X-position of photon beam	
Photon conversion in exit window (0.7%: Total)	0.1%: Thickness	
	0.3%: chemical composition	
	0.6%: photon conversion cross section	
RMS-cut correction (0.5%: Total)	Rejection of proton gas interactions	Greatly reduced for ePIC – trackers with good pointing resolution
Total	1.8%	

• With reductions, 1% absolute lumi precision within reach

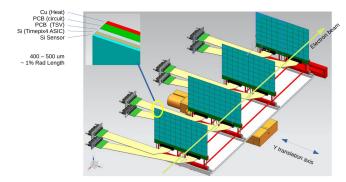
Luminosity Requirements and Systematics

- Latest design spaghetti calorimeter (fiber based)
- Inclined to avoid events directly hitting (and propagating along) direction of fiber

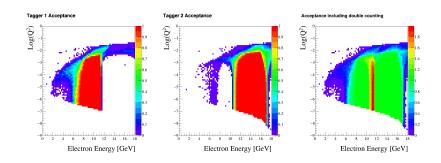


Figures - Yasir Ali, AGH UST, Krakow (modified)

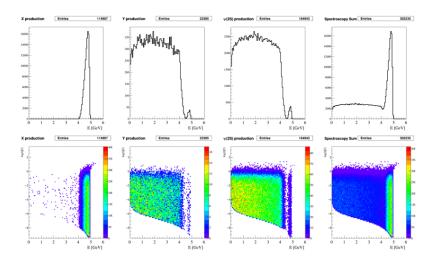
Low Q^2 Tagger - Quasi Real Photoproduction


Clean photoproduction signal over a limited region

$$\circ$$
 $10^{-3} < Q^2 < 10^{-1} \text{ (GeV/c}^2\text{)}$



Low Q^2 Tagger - Detail


- \circ 4 tracking layers per station, \sim 30 cm apart
- Timepix4 + Si Hybrides, 55x55 μ m pixels, 448x512 pixels per sensor (6.94 cm^2)
- 2 ns timing resolution
- ullet Singles rate capability high, > 20 kHz per 55 $\mu \mathrm{m}$ pixel

Low Q^2 Tagger - Acceptance

Far Backwards - Physics, Spectroscopy Distributions

Figures - D. Glazier, University of Glasgow