Observation of the antimatter helium4 nucleus

b

Why Antimatter ?

Clue to the matter anti-matter asymmetry.

Antimatter matters !

Aihong Tang

Why Antihelium 4 (anti- α) ?

Finger print of anti-star !

Why High-energy Nuclear Collisions ?

• Sweet spot between elementary particle collisions and Big Bang for anti-nuclei production.

Controlled, repeatable "little bangs".
 Active production instead of "passive" searches.

• Prove the existence (if any), provide a point of reference for future observations in cosmic radiation.

Production Mechanisms

- Relativistic Heavy Ion collisions :
 - ✓ High antibaryon density
 - ✓ High temperature
- Favorable environment for both production mechanisms.

Aihong Tang

Production Mechanisms

Idea from Walter Greiner: correlations are present in vacuum, allowing antinucleus like anti- α to be directly excited from the vacuum. Rate could be much larger than low value predicted by statistical coalescence.

Could be exciting but no evidence so far.

It is a challenging job

Key Components for this Search

PID : **TPC** + **TOF**

TPC and TOF combined provide clean particle identification.

STAR's High Level online tracking Trigger (HLT)

Sector tracking (SL3) in DAQ machines (24 in total, each for a TPC sector).
Information from subsystems (SL3 and others) are sent to Global L3 machines (GL3) where an event is assembled and a trigger decision is made.

Fast physics output with HLT

Data Sample

• 360 million minimum bias (MB) collisions, 270 million central collisions and 170 million high tower calorimeter events at 200 GeV in 2010.

• 70 million MB events at 200 GeV in 2007.

• 170 million MB events at 62 GeV in 2010.

In total one billion AuAu events sampled

dE/dx vs Rigidity

HLT has processing power to do rudimentary event reconstruction in real time, allowing events with a |Z| = 2 track to be tagged and fast-tracked via the normal offline calibration & reconstruction chain.

Combined PID (TPC+TOF)

Combined PID (TPC+TOF)

Very clean identification after search of > half-trillion tracks from almost one billion gold-gold collisions.

In total 18 counts observed.

Aihong Tang

Quality Assurance

Anti-α track qualities and event figs										
🔹 🕨 🏠 🕂 🛧 http://www.star.bnl.gov/protected/lfspectra/xueliang/Web/Run10HLTAntiHe4/note/evtdisplay/evtdisplay.htm 🤇	C Q- Goog	gle 💿								
💭 🎹 Observation4 nucleus Index of /priAlphaPaper HLT review , experiment STAR Online Web Server HLT Online Monitorin	ng	>>								
Anti-α track qualities and event figs		ſ								
Anti-α information: • Run10 200GeV Au+Au collisions 1. First anti-α candidate track qualities. Trun ID event vertexZ Ref. nHits nHitsdEdx Rigidity, eta phi dca path, chi2 nσ4 _{He} EMC tofLocalZ tofLocalY tot tof β Mass										
ID Mult (primary) Image: Constraint of the state										
Image: state stat										
 Second anti-α candidate track qualities. 										

Background Estimation

• Background contributes 1.4 counts of the 15 total counts from AuAu collisions at 200 GeV in 2010. Probability of misidentification at 10⁻¹¹ level.

Reduction Factor

• Production rate reduces by a factor of 1.6x10³ (1.1x10³) for each additional antinucleon (nucleon) added to the antinucleus (nucleus).

Race for the Heaviest

RHIC as an Exotic/Antimatter Machine

First STAR results for antinuclei

RHIC as an Exotic/Antimatter Machine 100 cm

Science 328, 58 (2010)

Nature 473 353 (2011)

Latest STAR results for antinuclei

News Coverage

We will not stop searching

3-D Chart of the Nuclides

Protons(Z)

						Techev		10/2 015	11.22.5	90.48%	0 27%	9 25%	51.24 5	3.30 M	OUT ND	
						P: 100.00%	€ 100.00% ф≈ 100.00%	€ 100.00%	€ 100.00%				β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: β-
					14F	15F 1.0 MeV	16F 40 KeV	17F 64.49 S	18F 1.8291 H	19F STABLE	20F 11.07 S	21F 4.158 S	22F 4.23 S	23F 2.23 S	24F 390 MS	
					P			€ 100.00%	€ 100.00%	100%	β-: 100.00%	β−: 100.00%	β-: 100.00% β-n < 11.00%	β-: 100.00%	β-: 100.00% β-x < 5.90%	β-: β-1
				120 0.40 MeV	130 8.58 MS	140 70.606 S	150 122.24 S	160 STABLE	170 STABLE	180 STABLE	190 26.88 S	200 13.51 S	210 3.42 S	220 2.25 S	230 82 MS	
				P	(p≈ 100.00% € 100.00%	c: 100.00%	e: 100.00%	99.702.X	0.000%	0 200%	β-: 100.00%	β-: 100.00%		β-: 100.00% β-π < 22.00%	β-: 100.00% β-h: 31.00%	β-: β-2
			10N	11N 1.58 MeV	12N 11.000 MS	13N 9.965 M	14N STABLE	15N STABLE	16N 7.13 S	17N 4.173 S	18N 624 MS	19N 271 MS	20N 130 MS	21N 85 MS	22N 24 MS	1
			P. 100.00%	P: 100.00%	c 100.00%	c: 100.00%	33 034.4	0.366.6	β-: 100.00% β-α: 1.2E-3%	β-: 100.00% β-n: 95.1%	β-: 100.00% β-π: 14.30%	β-: 100.00% β-n: 54.60%	β-: 100.00% β-n: 57.00%	β-: 100.00% β-n: 81.00%	β-: 100.00% β-n: 36.00%	ß-
		8C 230 KeV	9C 126.5 MS	10C 19.290 S	11C 20.334 M	12C STABLE	13C STABLE	14C 5700 Y	15C 2.449 S	16C 0.747 S	17C 193 MS	18C 92 MS	19C 49 MS	20C 14 MS	21C <30 NS	
		P: 100.00% at	€ 100.00% ф: 61.60%	€ 100.00%	e: 100.00%	30.02%	1.11.2	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 99.00%	$\begin{array}{l} \beta -: 100.00\% \\ \beta -n: 32.00\% \end{array}$	β-: 100.00% β-h: 31.50%	β-n: 61.00% β-	β-: 100.00% β-n: 72.00%	N	β-: β-2
	68	7B 1.4 MeV	8B 770 MS	9B 0.54 KeV	10B STABLE	11B STABLE	12B 20.20 MS	13B 17.33 MS	14B 12.5 MS	15B 9.93 MS	16B <190 PS	17B 5.08 MS	18B <26 NS	19B 2.92 MS		
	2P	e P	ea: 100.00% e: 100.00%	2a: 100.00% P: 100.00%	19.0%	002.4	β-: 100.00% B3A: 1.58%	β-: 100.00N	β-: 100.00% β-n: 6.04%	β-: 100.00% β-h: 93.60%	N	β-: 100.00% β-n: 63.00%	N	β-: 100.00% β-n: 72.00%		
	5Be	6Be 92 KeV	7Be 53.22 D	8Be 5.57 eV	9Be STABLE	10Be 1.51E+6 Y	11Be 13.81 S	12Be 21.49 MS	13Be 2.7E-21 \$	14Be 4.84 MS	15Be <200 NS	16Be <200 NS				
	P	e: 100.00% P: 100.00%	€ 100.00%	e: 100.00%	100.%	β-: 100.00%	β-: 100.00% β-α: 3.1%	β-: 100.00% β-h≤ 1.00%	N	β-: 100.00% β-n: 94.00%	N	211				
3Li	4∐ 6.03 MeV	SLi s 1.5 MeV	GLI STABLE	7Li STABLE	814 2M 9.968	911 178.3 MS	1013	11Li 8.59 MS	12L1 <10 NS	×						
P	P: 100.00%	P: 100.00% a: 100.00%	1.55%	36.41.4	β-d: 100.00% β-: 100.00%	β-: 100.00% β-n: 50.80%	N: 100.00%	β-: 100.00% β-ma: 0.027%	N							
	SHe STABLE 0.000137%	4He STABLE 99.999863%	5He 0.60 MeV	6He 806.7 MS	7He 150 KeV	8He 119.1 MS	9Ht	10 He 300 KeV								
20	0.000107.2	22.222000.00	N: 100.00% a: 100.00%	β-: 100.00%	N	β-: 100.00% β-h: 16.00%	N: 100.00%	N: 100.00%								
1H STABLE 99.985%	2H STABLE 0.015%	3H 12.32 Y	4H 4.6 MeV	SH 5.7 MeV	6H 1.6 MeV	7H 29E-23 Y										
		β-: 100.00%	N: 100.00%	N: 100.00%	N: 100.00%	2N7										
×	Neutron 10.23 M															
	β-: 100.00%															

Antinuclei \rightarrow extend chart to negative Z & negative N Hypernuclei \rightarrow add 3rd axis for strangeness S Antihypernuclei \rightarrow S axis also flips sign

Hypernuclei \rightarrow add 3rd axis for strangeness *S* Antihypernuclei \rightarrow *S* axis also flips sign

Synergy with Major Scientific Anniversary

Year 2011 : the 100th anniversary of Rutherford's α particle scattering experiments which marked the dawn of modern sub-atomic physics.

1911 : Rutherford used α + gold to discover the nucleus; 2011 : RHIC used gold + gold to discover the anti- α .

We are proud of that connection !

Aihong Tang

Homework

 Name a few other antimatter experiments, and explain their major goals

• Have we found anti-alpha in cosmos ? Tip : search for the progress of the AMS-02 experiment

 Is there any antimatter present in our surroundings ? Is there any practical applications for antimatter ?

Implication Beyond Nuclear Physics

•**Proved that anti-** α exists.

 Provides the point of reference for various searches for new phenomena in the cosmos.

The production rate of antihelium4 in nuclear collisions is consistent with thermodynamic and coalescent nucleosynthesis models.

If anti- α in the cosmos were from coalescence, the ratio of anti- α/α would be 10⁻¹⁶. With a sensitivity of 10⁻⁹, even a single anti- α count seen by the AMS experiment would be a strong evidence of anti-star.

• Unless accelerator technology has major break through, our record for the heaviest stable antimatter will stand for the foreseeable future.

The Competition

STAR : Paper submitted to Nature on March 14th.

Posted on arXiv on March 16th.

Alice :

Candidates presented to public on March 23rd.

Without STAR's High Level Trigger, anti-helium 4 would be eventually observed at RHIC, but LHC would claim the prize for sure.

Special thanks to CAD for providing us high quality beam in run 2010, which makes this discovery possible.