RHIC and the Electron-Ion Collider: Our Quest to Understand the Structure of Visible Matter in our Universe

Alex Jentsch, Brookhaven National Lab

NuSTEAM/NuPUMAS @ BNL July 5th, 2023

Electron Ion Collider

Visible Matter

• All of the visible matter in the universe is comprised of atoms, which contain nuclei.

- Nuclei are held together by the strong nuclear force, which governs interactions between the "quarks" and "gluons" found inside the proton.
- Quarks and gluons collectively called "partons".

proton

Visible Matter

- Some fundamental questions we can ask:
 - What are the properties of the proton?
 - \rightarrow Spin, mass, charge.
 - How do these properties manifest?

 Quantum Chromodynamics (QCD) describes the interactions between the quarks and gluons (the strong force), and introduces the concept of "color", the strong force charge.

Standard Model of Elementary Particles

The proton gets even more complicated

 As you ramp up the energy, the proton becomes awash with more partons (quarks and gluons)!

The Proton Spin Puzzle

Spin structure – the three "valence" quarks do not account for the total spin of the proton!

The Proton Mass

• The proton mass composition is also rather complicated to pin-down!

- Mass does not arise as simple sum of quark masses!
- ~ 99% of the mass is driven by quark and gluon dynamics!

Some QCD Peculiarities

Another peculiar thing about QCD: <u>confinement</u>.

Some QCD Peculiarities

An additional wrinkle in QCD \rightarrow gluons can interact with *themselves*.

Image credit: From figure 5 in Siegfried Bethke and Peter Zerwas 2004 *Physik Journal* **3** 12 31. Short distance (high-energy) = small coupling (weaker interaction).

- Opposite of the EM force and gravity, which decrease as a function of $\frac{1}{(distance)^2}$.
- <u>Consequences:</u>
 - QCD calculations become non-perturbative (exceedingly hard) when the coupling constant is large (i.e. at low energy).

QCD requires experimental data to make progress!

Okay, so the structure of matter and QCD seem complicated...how can we study them?

Building our microscope!

SLAC 1969: e + p (fixed)

HERA: 1998-2007: e + p (collider)

LEP @ CERN: 1989-2001: e+e-

RHIC: 2000 – present: p+p, p+A, A+A, polarized protons

LHC: 2008 – present: p+p, p+A, A+A

11

JLAB/CEBAF: 1984 – present: e + p (fixed)

Building our microscope!

"Illuminating" the Structure of Matter

Use Deep-Inelastic Scattering (DIS)

 Collide electrons with protons or nuclei – the photon that is exchanged literally illuminates the target, allowing you to build a microscope of sorts to study the structure of matter!

"Illuminating" the Structure of Matter Measure of $Q^2 = 2E_e E'_e (1 - \cos\theta'_e) = -q^2$ resolution power Kinematics: θ_e *Low* Q^2 = low resolution proton proton 2000 U *High* Q^2 = high resolution d

Physics aside: Matter of Definition and France at low-x and Fra

Saturation – gluon density increases drastically at low-x! At some point, does the density saturate? New state of matter? gluon recombination gluon emission **Parton Distribution Function (PDF)** 000000 000000 4.0r Momentum Fraction Times Parton Density CTEQ 6.5 parton 000000 3.5 ⊢ distribution functions $Q^2 = 10 \text{ GeV}^2$ gluons 3.0 2.5 k_{\uparrow}^{2}) k²) 2.0 k_T φ(x, .5 .0 Т Ч 0.5 LOW X 0.0001 0.001 0.01 0. Fraction of Overall Proton Momentum Carried by Parton HIGH X

What is needed experimentally?

EIC Yellow Report, Fig. 2.1

Lots of microscopes...and still unanswered questions?

Is there a machine that can help?

The Electron-Ion Collider (EIC)

- Deep-Inelastic Scattering machine → electron + proton (or nucleus) collisions.
- Built on the infrastructure of the existing Relativistic Heavy-Ion Collider (RHIC) facility at Brookhaven Lab, in partnership with Jefferson Lab.
 - This machine combines the functionality of HERA and RHIC.

The Electron-Ion Collider (EIC)

What is the EIC:

A machine for colliding polarized electrons with polarized protons/light-nuclei, or unpolarized heavy-nuclei.

What is new/different:

- A factor of 100 1000 higher luminosity than HERA → more statistics, higher precision!
- Both electrons and protons / light nuclei
 polarized → spin-dependent observables!
- Nuclear beams: d to U → heavy-nuclei provide access to novel studies in QCD!

Intermission: Cute Animals

Julep

They (mostly) get along.

She's in a death metal band.

More about QCD

Universality

• QCD interactions arising from different collision systems should be *universal*.

Measurements from one collision system can inform studies on other systems!

high-energy parton interaction : calculable in QCD PDFs and Hadronization: need to be determined experimentally

- Initial state: nuclear structure and parton distributions
 - How does the initial distribution of partons (PDF) affect the interaction?
 - Protons vs. nuclei?
 - How does polarization (spin) modfiy these distributions? → Proton spin puzzle!
- <u>Final state: Fragmentation &</u> <u>Hadronization</u>
 - How do the produced partons fragment and hadronize into the particles we measure?
 - Hadronization can aid in our understanding of confinement in QCD.

Focusing on the Initial State: Proton and Nuclear Structure

Quantifying proton structure – structure functions

Gluons manifest themselves through

➤ the behavior of the cross section as function of x and Q² without gluons the cross section depends only on x, no dependence on Q² → F₂(x)

cross section ~ $\alpha F_2(x,Q^2) + \beta F_L(x,Q^2)$

quark+anti-quark momentum distributions gluon momentum distribution

 F_2 and F_L - "structure functions"

"cross section" - essentially a probability for an event.
DIS cross section × luminosity = DIS event rate
BUT: (e.g. number of collisions per second)
Observe strong rise of cross section with both x and Q²

Because of gluon-initiated processes

EIC:

- How are the structure functions modified in nuclei?
- Spin dependence?
- Protons vs. neutrons?

Neutron Structure Functions

EIC enables use of deuteron beams \rightarrow the next best thing to a beam of neutrons!

- Measurements on unpolarized deuterons¹ (or polarized He-3)² at the EIC.
- Spectator proton momentum → enables selection of nuclear (p/n) configurations.
 - Extract free neutron structure function³ \rightarrow Not possible elsewhere!
 - Study nuclear modifications of both nucleons in the deuteron (study in progress).

[1] Z. Tu, A. Jentsch, et al., Physics Letters B, (2020)
[2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, *et al.*, Phys. Lett. B, Volume 823, 136726 (2021)
[3] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

What about nuclei?

Nuclear Parton Distribution Functions

So, how do we take pictures of the collisions at the EIC? What is our *microscope*?

Defining the Requirements: Yellow Report Initiative

The EIC Users Group: EICUG.ORG Report: https://arxiv.org/abs/2103.05419

Physics Topics → Processes → Detector Requirements

Physics Working Group:

Inclusive Reactions Semi-Inclusive Reactions Jets, Heavy Quarks Exclusive Reactions Diffractive Reactions & Tagging

Detector Working Group:

Tracking + Vertexing Particle ID Calorimetry DAQ/Electronics Polarimetry/Ancillary Detectors Central Detector: Integration & Magnet Far- Forward Detector & IR Integration

32

	hadronic calorir	neters solen	oid coils	e/m calorimeters	l
	MAPS tracker	MPG trackers	ToF, DI	RC, RICH detectors	-
				E	PIC
<-		8	.5 m		>

Intermission: fun animal facts

- Live primarily in desert regions in North Africa and Arabian peninsula.
- Their bat-like ears radiate body heat and help keep the foxes cool.
- They have been known to jump in the air 2 feet (.6 meters) high from a standing position, and they are able to leap a distance of 4 feet (1.2 meters).
- Live in adorable colonies of around 10 foxes.
- They are omnivorous, but they prefer Tex-Mex and craft beer.
 - Okay, maybe not, but if they tried it, they'd like it.

So, the EIC seems far away...what else can we do NOW? (we are impatient, after all)

Physics of RHIC – Hot and Cold QCD

Hot vs. Cold QCD – refers to temperature. All of the physics we have been talking about has been "cold".

<u>"Hot" QCD</u>

- Studies of hot, dense environment formed in heavy-ion (e.g. Au+Au) collisions!
- Extreme form of QCD matter → the Quark-Gluon Plasma → a "soup" of deconfined quarks and gluons.

Physics of RHIC – Hot and Cold QCD

RHIC Cold QCD ⇔ EIC physics

<u>Universality!!</u> – We are impatient, but we also need the RHIC data to fully utilize the EIC data!

Lots of un-analyzed RHIC Cold QCD data (e.g. 2017 data), and more datasets being collected NOW!

Polarized proton + proton collisions

Proton spin (gluon contribution).

- Hints of saturation?
- Nuclear PDFs.

Ultra-Peripheral Au + Au (or p+p, p+A) collisions

 Proton spin (orbital angular momentum contribution).

Looking Forward: The STAR Forward Upgrade

- Addition of silicon tracking system and EM and hadronic calorimetry
 → forward rapidity coverage.
 - More coverage in x!

Looking Forward: The STAR Forward Upgrade

- Addition of silicon tracking system and EM and hadronic calorimetry
 → forward rapidity coverage.
 - More coverage in x!

sTGC

STAR Forward Upgrade

EIC Timeline

- Leverage STAR Cold QCD program and perform studies relevant to EIC physics.
- EIC detector and physics impact studies.

2022-2025

Our understanding of the structure of visible matter in the universe!

