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Visible Matter
• All of the visible matter in the universe is comprised of atoms, which contain nuclei.

u
u

d
proton

• Nuclei are held together by the strong nuclear force, 
which governs interactions between the “quarks” and 
“gluons” found inside the proton.

• Quarks and gluons collectively called “partons”.
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Visible Matter
• Some fundamental questions we can ask:

• What are the properties of the proton? 
→ Spin, mass, charge.
• How do these properties manifest?

u
u

d
proton

• Quantum Chromodynamics (QCD) describes 
the interactions between the quarks and 
gluons (the strong force), and introduces the 
concept of “color”, the strong force charge.
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The proton gets even more complicated
• As you ramp up the energy, the proton becomes awash with 

more partons (quarks and gluons)!

Three “valence” quarks 
inside proton.

Sea quark pairs and newly-
produced gluons.

More powerful microscope 
(higher energy)

4



The Proton Spin Puzzle
Spin structure – the three “valence” quarks do not account for the total spin of 
the proton!

DG

SqDq

Lg,q

Proton spin: !
"
= !

"
Σ#Δ𝑞 + Δ𝐺 + 𝐿$,#

Only 20-30% comes from the quarks! 

quarks gluons

Orbital 
angular 
momentum
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The Proton Mass
• The proton mass composition is also rather complicated to pin-down!

• Mass does not arise as 
simple sum of quark masses!

• ~ 99% of the mass is driven 
by quark and gluon 
dynamics!
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Some QCD Peculiarities
Another peculiar thing about QCD: confinement.

u 𝑑̅ 𝜋!meson

u 𝑑̅

u $𝑢 u 𝑑̅𝜋"meson 𝜋!meson

3-quarks: baryon
Quark + anti-quark: mesons
Collectively: hadrons
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An additional wrinkle in QCD → gluons can interact with themselves.

Image credit: From figure 5 in Siegfried Bethke and 
Peter Zerwas 2004 Physik Journal 3 12 31.

o Opposite of the EM force and gravity, which decrease as a 
function of !

"#$%&'() !.
• Consequences:

o QCD calculations become non-perturbative (exceedingly 
hard) when the coupling constant is large (i.e. at low energy).

Some QCD Peculiarities

8
QCD requires experimental data to make progress!

u 𝑑̅ u 𝑑̅

Short distance (high-energy) = small 
coupling (weaker interaction).

Long distance (low-energy) = large 
coupling (stronger interaction).



Okay, so the structure of matter 
and QCD seem complicated…how 

can we study them?



Different kinds of interactions (just a few)

Deep-Inelastic Scattering: 
electron + proton (or nucleus) collisions

Electron + positron annhiliation:
electron + positron collisions

Hadronic interactions:
Proton + proton collisions

Led to discovery of 
the gluon! (PETRA)

e-

e+

𝑞

"𝑞

𝑞 𝑞

𝑔 𝑔
𝑔

proton
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Led to discovery of 
the quark! (SLAC)

Discovery of the 
Higgs! (LHC)



Building our microscope!

SLAC 1969: e + p (fixed)

LEP @ CERN: 1989-2001: e+e-

HERA: 1998-2007: e + p (collider)

RHIC: 2000 – present: p+p, 
p+A, A+A, polarized protons

LHC: 2008 – present: p+p, p+A, A+A

JLAB/CEBAF: 1984 – present: e + p (fixed)
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Building our microscope!

SLAC 1969: e+p

LEP – CERN – 1989-2001: e+e-

HERA: 1998-2007: e+p

RHIC - 2000 – present: p+p. 
p+A, A+A – polarized protons

LHC - 2008 – present: p+p. p+A, A+A

No machines for colliding e + A 
beams yet and no machines for 
polarized e+p beams!

JLAB/CEBAF - 1984 – present: e+p (fixed 
target)

~ 8-10 meters
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“Illuminating” the Structure of Matter
• Use Deep-Inelastic Scattering (DIS)

oCollide electrons with protons or nuclei – the photon that is exchanged literally 
illuminates the target, allowing you to build a microscope of sorts to study the 
structure of matter!

electron + proton electron + nucleus
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“Illuminating” the Structure of Matter
Measure of 

resolution power
Kinematics:

𝑄$ = 2𝐸%𝐸%& 1 − 𝑐𝑜𝑠𝜃%& = −𝑞$

u
u

d

proton
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𝐿𝑜𝑤 𝑄" = low resolution

𝐻𝑖𝑔ℎ 𝑄" = high resolution

q

e

proton

e’

𝜃!



“Illuminating” the Structure of Matter

Measure of momentum 
fraction of struck parton

Kinematics:
𝑥 =

𝑄$

2𝑝𝑞

Measure of 
resolution power𝑄$ = 2𝐸%𝐸%& 1 − 𝑐𝑜𝑠𝜃%& = −𝑞$

u
u

d
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“Bjorken-x”

x ~ 1/3 for just the 
“valence” quarks.

q

e

proton

e’

𝜃!



“Illuminating” the Structure of Matter

Measure of momentum 
fraction of struck parton

Kinematics:
𝑥 =

𝑄$

2𝑝𝑞

Measure of 
resolution power𝑄$ = 2𝐸%𝐸%& 1 − 𝑐𝑜𝑠𝜃%& = −𝑞$
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“Bjorken-x”
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Physics aside: Exotic QCD state at low-x
Saturation – gluon density increases drastically at low-x! At some 
point, does the density saturate? New state of matter?

?

QS: Matter of Definition and Frame (II)
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Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
a
x.

 d
e
n
si

ty

Qs kT

~ 1/kT

k T
 φ

(x
, 

k T
2
)

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

QS: Matter of Definition and Frame (II)
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depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
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gluon emission gluon recombination

?
=
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Parton Distribution 
Function (PDF)



What is needed experimentally?
EIC Yellow Report, Fig. 2.1
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Lots of microscopes…and still 
unanswered questions?

Is there a machine that can help?



The Electron-Ion Collider (EIC)

EIC at BNL

2.4 miles in 
circumference!

IP6

IP8
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• Deep-Inelastic Scattering machine → electron + 
proton (or nucleus) collisions.

• Built on the infrastructure of the existing Relativistic 
Heavy-Ion Collider (RHIC) facility at Brookhaven Lab, 
in partnership with Jefferson Lab.

• This machine combines the functionality of HERA 
and RHIC.



What is the EIC:

A machine for colliding polarized electrons 
with polarized protons/light-nuclei, or 
unpolarized heavy-nuclei.

What is new/different:

• A factor of 100 - 1000 higher luminosity than 
HERA → more statistics, higher precision!

• Both electrons and protons / light nuclei 
polarized → spin-dependent observables! 

• Nuclear beams: d to U → heavy-nuclei 
provide access to novel studies in QCD!

The Electron-Ion Collider (EIC)

EIC at BNL

2.4 miles in 
circumference!

IP6

IP8
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Data taking to start after 2030!



Intermission: Cute Animals
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Julep Lilu

They (mostly) get 
along.

She’s in a 
death metal 
band.



More about QCD

• QCD interactions arising from 
different collision systems should be 
universal. 

Universality proton

e
e’

PDF

Deep-Inelastic Scattering: e+p

Proton + proton collision
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Measurements from one 
collision system can inform 
studies on other systems!



More about QCD QCD Interactions ~ PDF ⊗ high-energy parton interaction ⊗ Hadronization

high-energy parton interaction : calculable in QCD
PDFs and Hadronization: need to be determined experimentally
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• Initial state: nuclear structure and 
parton distributions

• How does the initial distribution of partons
(PDF) affect the interaction? 

• Protons vs. nuclei?
• How does polarization (spin) modfiy these 

distributions? → Proton spin puzzle!

Initial State

Final State

• Final state: Fragmentation & 
Hadronization

• How do the produced partons fragment and 
hadronize into the particles we measure?

• Hadronization can aid in our understanding 
of confinement in QCD.



Focusing on the Initial 
State: Proton and Nuclear 

Structure



Gluons manifest themselves through
Ø the behavior of the cross section as function of x and Q2

quark+anti-quark
momentum distributions

gluon momentum 
distribution

without gluons the cross section depends only on 
x, no dependence on Q2 à F2(x)

Bjorken scaling

Resolution (Q2 / GeV2) 
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BUT:
Observe strong rise of  cross section with both x and Q2

Because of gluon-initiated processes
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EIC: 
• How are the structure functions modified in nuclei?
• Spin dependence?
• Protons vs. neutrons?

Quantifying proton structure – structure functions
𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ~ 𝛼𝐹! 𝑥, 𝑄! + 𝛽𝐹"(𝑥, 𝑄!)

𝑭𝟐 and 𝑭𝑳 - “structure functions”  

“cross section” – essentially a probability for an event.
𝑫𝑰𝑺 𝒄𝒓𝒐𝒔𝒔 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 × 𝒍𝒖𝒎𝒊𝒏𝒐𝒔𝒊𝒕𝒚 = 𝑫𝑰𝑺 𝒆𝒗𝒆𝒏𝒕 𝒓𝒂𝒕𝒆

(𝐞. 𝐠. 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐨𝐥𝐥𝐢𝐬𝐢𝐨𝐧𝐬 𝐩𝐞𝐫 𝐬𝐞𝐜𝐨𝐧𝐝)



Neutron Structure Functions

deuteron
• Measurements on unpolarized deuterons1 (or polarized He-3)2

at the EIC.

[1] Z. Tu, A. Jentsch, et al., Physics Letters B, (2020)
[2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., Phys. Lett. B, Volume 823, 136726 (2021) 
[3] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor’s Suggestion)

EIC enables use of deuteron beams → the next best thing to a beam of neutrons!
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• Spectator proton momentum → enables selection of 
nuclear (p/n) configurations.

• Extract free neutron structure function3 → Not possible elsewhere!
• Study nuclear modifications of both nucleons in the deuteron (study 

in progress).



What about nuclei?
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Nuclear Parton Distribution Functions
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More data from EIC

Better constraints on 
nPDFs

=

E. C. Aschenauer, S. Fazio, M. A. C. Lamont, H. Paukkunen, and P. Zurita
Phys. Rev. D 96, 114005 (2017)



So, how do we take pictures 
of the collisions at the EIC? 

What is our microscope?



Defining the Requirements: Yellow Report Initiative 

Physics Topics ➝ Processes ➝ Detector Requirements

Physics Working Group: 
Inclusive Reactions
Semi-Inclusive Reactions
Jets, Heavy Quarks
Exclusive Reactions
Diffractive Reactions & Tagging

Detector Working Group:
Tracking + Vertexing
Particle ID
Calorimetry
DAQ/Electronics
Polarimetry/Ancillary Detectors
Central Detector: Integration & Magnet
Far- Forward Detector & IR Integration

The EIC Users Group: EICUG.ORG
Report: https://arxiv.org/abs/2103.05419
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hadronic calorimeters e/m calorimeters          

ToF, DIRC,  RICH detectorsMAPS tracker MPG trackers

solenoid coils
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3 Years Later: The ePIC Collaboration



hadronic calorimeters e/m calorimeters          

ToF, DIRC,  RICH detectorsMAPS tracker MPG trackers

solenoid coils
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𝜃

Proton/nucleus beam

Scattered (detected) particles

Electron beam

Scattered (detected) electron

3 Years Later: The ePIC Collaboration



Overall detector requirements:
• Large rapidity (-4 < h < 4) coverage; and far beyond in 

far-forward/far-backward detector regions
• Rapidity is related to the polar angle → 0 < h < 4 

equates to 2.1° < 𝜃 < 90°

hadronic calorimeters e/m calorimeters          

ToF, DIRC,  RICH detectorsMAPS tracker MPG trackers

solenoid coils
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𝜃

Proton/nucleus beam

Scattered (detected) particles

Electron beam

Scattered (detected) electron
𝜂 = −𝑙𝑛 𝑡𝑎𝑛 𝜃/2

pseudorapidity

3 Years Later: The ePIC Collaboration



Overall detector requirements:
• Large rapidity (-4 < h < 4) coverage; and far beyond in 

far-forward/far-backward detector regions
• Rapidity is related to the polar angle → 0 < h < 4 

equates to 2.1° < 𝜃 < 90°

hadronic calorimeters e/m calorimeters          

ToF, DIRC,  RICH detectorsMAPS tracker MPG trackers

solenoid coils
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Far-forward here means 𝜽 < 2.1∘
(~37 mrad)

𝜃
Scattered (detected) particles

Electron beam

Scattered (detected) electron

3 Years Later: The ePIC Collaboration

𝜽 < 2.1∘

𝜂 = −𝑙𝑛 𝑡𝑎𝑛 𝜃/2
pseudorapidity



Roman Pots

Off-Momentum Detectors

B0 Silicon Tracker and Preshower

Zero-Degree Calorimeter

B0pf combined function magnet

Focusing Quadrupoles

Overall detector requirements:
• Large rapidity (-4 < h < 4) coverage; and far beyond in 

far-forward/far-backward detector regions
• Rapidity is related to the polar angle → 0 < h < 4 

equates to 2.1° < 𝜃 < 90°

hadronic calorimeters e/m calorimeters          

ToF, DIRC,  RICH detectorsMAPS tracker MPG trackers

solenoid coils
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𝜃
Scattered (detected) particles

Electron beam

Scattered (detected) electron

𝜽 < 2.1∘

𝜂 = −𝑙𝑛 𝑡𝑎𝑛 𝜃/2
pseudorapidity

Need detectors here!!

3 Years Later: The ePIC Collaboration



far-forward detectors

The Interaction Region (IR6)
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EIC at BNL

IP6

IP8



Intermission: fun animal facts 

• Live primarily in desert regions in North Africa 
and Arabian peninsula.

• Their bat-like ears radiate body heat and help 
keep the foxes cool.

• They have been known to jump in the air 2 
feet (.6 meters) high from a standing position, 
and they are able to leap a distance of 4 feet 
(1.2 meters).

• Live in adorable colonies of around 10 foxes.
• They are omnivorous, but they prefer Tex-

Mex and craft beer.
• Okay, maybe not, but if they tried it, they’d like it.
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So, the EIC seems far away…what 
else can we do NOW?

(we are impatient, after all)



Relativistic Heavy Ion Collider (RHIC)

• Located at Brookhaven National Laboratory in Upton, NY (Long Island).

https://www.bnl.gov/rhic/images.asp

• Various energies and species
• Au, Cu, U, He-3, deuteron, 

etc.
• Primarily Au+Au, p+p, p+Au

collisions.

2.38 miles in circumference!

Only polarized proton collider on 
earth!
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Solenoidal Tracker at RHIC
• Multi-purpose collider detector with 

tracking, calorimetry, and particle 
identification detector subsystems.

The STAR Detector



Physics of RHIC – Hot and Cold QCD

• Studies of hot, dense environment formed 
in heavy-ion (e.g. Au+Au) collisions!

• Extreme form of QCD matter → the Quark-
Gluon Plasma → a “soup” of deconfined 
quarks and gluons.

“Hot” QCD 

41

Hot vs. Cold QCD – refers to temperature. All of the 
physics we have been talking about has been “cold”. 



Lots of un-analyzed RHIC Cold QCD data 
(e.g. 2017 data), and more datasets being 
collected NOW!

“Cold” QCD 

RHIC Cold QCD ⟺ EIC physics

Universality!! – We are impatient, but 
we also need the RHIC data to fully 
utilize the EIC data!
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Physics of RHIC – Hot and Cold QCD

Polarized proton + proton collisions

• Proton spin (gluon 
contribution).

proton + nucleus collisions

• Hints of saturation?
• Nuclear PDFs. • Proton spin (orbital 

angular momentum 
contribution).

Ultra-Peripheral Au + Au (or p+p, p+A) collisions

𝛾



Looking Forward: The STAR Forward Upgrade

HCal

ECal
sTGC

Silicon

Forward Silicon Tracker (FST)

Forward Calorimeter System (FCS)
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• Addition of silicon tracking system and EM and hadronic calorimetry 
→ forward rapidity coverage.

• More coverage in x!

First data-taking run with these new 
components happened in 2022 – data being 
produced now!



Looking Forward: The STAR Forward Upgrade

HCal

ECal
sTGC

Silicon
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• Addition of silicon tracking system and EM and hadronic calorimetry 
→ forward rapidity coverage.

• More coverage in x!

• STAR Forward Upgrade
Collecting Data Now + next 3 years

Proton spin: !
"
= !

"
Σ#Δ𝑞 + Δ𝐺 + 𝐿$,#

quarks gluons

Orbital 
angular 
momentum

nPDFs Lots of overlap 
with EIC topics!



EIC Timeline
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2022-2025

• EIC detector and 
physics impact studies.

• Leverage STAR Cold QCD 
program and perform studies 
relevant to EIC physics.

2024-2031

• Build and commission EIC detectors.
• Continue building analysis framework.
• Continue analysis of STAR data from 

Forward Upgrade.

2030-2033

• Begin operations, 
commission 
machine.

2033+++
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Our understanding of the structure of visible matter in the universe!
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