Far-Forward Physics @ the EIC

Alex Jentsch, Brookhaven National Lab ajentsch@bnl.gov

NuSTEAM/NuPUMAS @ BNL July 5th, 2023 Electron lon Collider

Jefferson Lab

What is meant by Far-Forward?

Diffractive + Exclusive Final States

• Diffractive events characterized by an " η -gap" between jet and scattered proton \rightarrow proton scattered at high pseudorapidity!

Diffractive + Exclusive Final States

- Diffractive events characterized by an " η -gap" between jet and scattered proton \rightarrow proton scattered at high pseudorapidity!
- Can be described by color-singlet "pomeron" exchange in Regge theory.
 - Accounts for ~15% of the total e + p cross section at HERA and non-perturbative!
 - HERA: the rest-frame proton was seeing a 50 TeV electron and 15% of the time the proton didn't break up!

Far-Forward Processes at the EIC

Far-Forward Physics at the EIC

...and MANY more!

[1] Z. Tu, A. Jentsch, et al., Physics Letters B, (2020)

[2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, *et al.*, Phys. Lett. B, **Volume 823**, 136726 (2021)

[3] W. Chang, E.C. Aschenauer, M. D. Baker,
A. Jentsch, J.H. Lee, Z. Tu, Z. Yin, and
L.Zheng, Phys. Rev. D **104**, 114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys.
Rev. C **104**, 065205, (2021) (Editor's
Suggestion)

u-channel backward exclusive electroproduction

6

Protons: Partonic Imaging

8

Fig. 2.2 from the EIC White Paper

Fig. 2.2 from the EIC White Paper

9

 k_T /

10

Deeply Virtual Compton Scattering

Exclusive Vector Meson and Real Photon Production

DVCS:

- Very clean experimental signature
- No VM wave-function uncertainty
- Hard scale provided by Q²
- Sensitive to both quarks and gluons Q²
 dependence of cross section

- Uncertainty of wave function
- J/Psi → direct access to gluons, c+cbar pair production

13

• Light VMs \rightarrow quark-flavor separation

Small GPD Primer

What about (light) nuclei?

Tagged DIS at the EIC

- Tagged DIS measurements on light nuclei → "tag" (generally) far-forward particles in final state for useful kinematic information!
 - Provides more information than inclusive cross sections!
- Lots of topics!
 - Short-range correlations.
 - Gluon distributions in nuclei.
 - Free neutron structure functions.
 - Nuclear modifications of nucleons in light nuclei.
 - EMC effect, anti-shadowing, etc.

Tagged spectator nucleon momentum → experimental variable for selecting nuclear configurations with free and modified nucleons.

"active/struck nucleon"

 e^{\prime}

Light nuclei - deutrerons: Free Neutron Structure

Neutron Structure

- Protons well-studied at HERA -> So...why the neutron? _e
 - Flavor separation, baseline for studies of nuclear modifications.

Neutron Structure

- Protons well-studied at HERA -> So...why the neutron?
 - Flavor separation, baseline for studies of nuclear modifications.
- What makes the free neutron structure hard to measure?
 - Can only access neutrons in a nucleus.
 - Includes nuclear binding effects, Fermi motion, etc.

Neutron Structure

- Protons well-studied at HERA -> So...why the neutron?
 - Flavor separation, baseline for studies of nuclear modifications.
- What makes the free neutron structure hard to measure?
 - Can only access neutrons in a nucleus.
 - Includes nuclear binding effects, Fermi motion, etc.
- <u>Two options:</u>
 - 1. Inclusive measurements \rightarrow Average over all nuclear configurations, use theory input to correct for nuclear binding effects.
 - 2. Tagged measurements \rightarrow Select nuclear configuration via spectator kinematics, allows for differential study.
 - Spectator kinematics provide a knob to dial in different regions of interest for study (i.e. high p_T → SRC physics; very low p_T ~ 0 GeV/c yields access to on-shell extrapolation).
 - On-shell extrapolation enables access to free nucleon structure.
 - M. Sargsian, M. Strikman PLB 639 (iss. 3-4) 223231 (2006)

Basic Method - Pole Extrapolation

C. Weiss and W. Cosyn Phys. Rev. C **102**, 065204 (2020)

 $p_{pT}^2 > 0$ physical region

Free Neutron F₂ Extraction

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C **104**, 065205, (2021) **(Editor's Suggestion)**

22

Free Proton F₂ Extraction

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C **104**, 065205, (2021) **(Editor's Suggestion)**

Light nuclei – deuterons: The EMC Effect (on-going study)

The EMC Effect

- Discovered by the European Muon Collaboration ~40 years ago.
 - Puzzle: why the dip?
- Still an unanswered question, and one we hope the EIC can aid in answering.

The EMC Effect

• Potential pathway forward – study off-shell effect in deuterons.

Virtuality/off-shellness in the deuteron

<u>Question:</u> can the EMC effect be controlled via the offshellness without altering the colliding system? <u>Our goal:</u> establish experimental prospects to see if we will be sensitive enough to study this!

The EMC Effect

> Q^2 independent > Weight = F_2 (bound)/ F_2 (free)

Linear offshell dependence on the EMC effect. (Frankfurt, Strikman 80', Weiss)

The EMC Effect @ the EIC

<u>Approach:</u>

- Measure deuteron reduced crosssection σ_D , with and without the offshell effects included.
 - No FSI included.
- Ratio of σ_D inside and outside the EMC region (e.g. x ~ 0.5 and x ~ 0.2)
- Establish required integrated luminosity.
 - Challenging measurement → high-x + low probability nuclear configuration + lower beam energies.
- Neutron spectator not possible in 5x41 GeV/n due to detector acceptance.

28

The EMC Effect @ the EIC 5x110 GeV/n Integrated Luminosity ~16 fb-1

EIC versatility → different beam energy configurations!

- Higher energy configuration (5x110 GeV/n).
- More favorable detector acceptance -> study of proton *and* neutron spectators with same beam configuration.
- Measurement of same observable with different beam energies/spectator reconstruction enables better understanding of experimental systematics.

Summary

- Far-forward physics characterized by exclusive+diffractive final states.
 - Lots to unpack! proton spin, neutron structure, saturation, partonic imaging, meson structure, etc.
- There is lots of interest in the EIC community in studying this physics via these final states!
 - Exciting time to get involved!!
- Special thanks to Elke Aschenauer, Salvatore Fazio, and Kong Tu for some slides!!

Email me if you have any questions: ajentsch@bnl.gov

Now...how do we do this physics program?