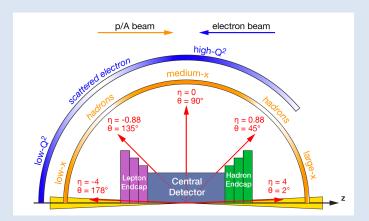

## **EIC Dual-Radiator RICH**

- 1. EIC forward RICH: Specifications
- 2. dRICH Collaboration: Status
- 3. EPIC: Envelope/radiation
- 4. dRICH Baseline Design
- 5. dRICH Simulations: Model
- 6. dRICH Performance 1
- 7. dRICH Performance 2
- 8. dRICH Aerogel
- 9. dRICH Mirros
- 10. dRICH Photo-detector
- 11. dRICH Readout Scheme
- 12. dRICH Mechanics: Vessel
- 13. dRICH Mechanics: Detector Box
- 14. dRICH Services
- 15. dRICH Integration

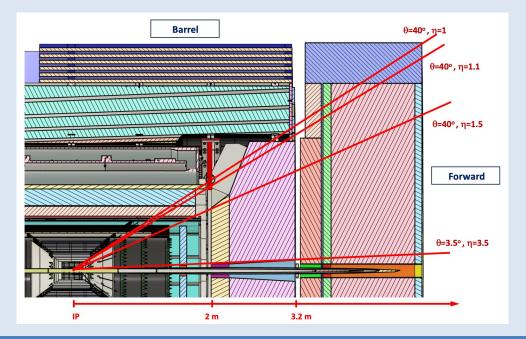
- 16 R&D: Status
- 17 R&D: Highlight
- 18 R&D: Milestones
- 19 QA Assurance
- 19 Construction Schedule
- 20 LLP
- 21 ES&H
- 22 Commissioning and calibration
- 23 Open Points / Refinements
- 24 Mitigation measures
- 25 Executive Summary




#### **EIC Forward RICH**

#### Goals:

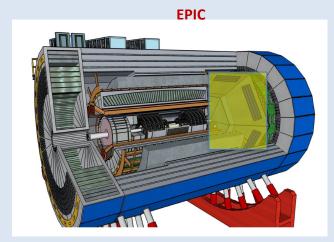
Forward particle detection6


Hadron ID in the extended 3-50 GeV/c interval

Electron ID up to 15 GeV/c



Essential for semi-inclusive physics due to absence of kinematics constraints


| η          | Nomenclature      | Electrons and Photons                                                            |                                   |                 | π/K/p      |            |
|------------|-------------------|----------------------------------------------------------------------------------|-----------------------------------|-----------------|------------|------------|
|            |                   | $\begin{array}{c} \text{Resolution} \\ \sigma_{\text{E}} / \text{E} \end{array}$ | PID                               | Min E<br>Photon | p-Range    | Separation |
| 1.0 to 1.5 | Forward Detectors | 2%/E<br>⊕ (4*-12)%/√E<br>⊕ 2%                                                    | $3\sigma$ e/ $\pi$ up to 15 GeV/c | 50 MeV          | ≤ 50 GeV/c | ≥ 3σ       |
| 1.5 to 2.0 |                   |                                                                                  |                                   |                 |            |            |
| 2.0 to 2.5 |                   |                                                                                  |                                   |                 |            |            |
| 2.5 to 3.0 |                   |                                                                                  |                                   |                 |            |            |
| 3.0 to 3.5 |                   |                                                                                  |                                   |                 |            |            |



### dRICH Organization

Compact cost-effective solution for particle identification in the high-energy endcap at EIC



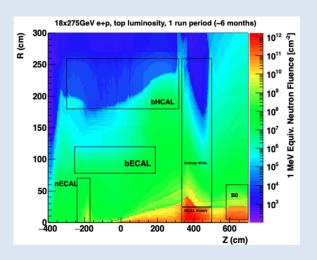


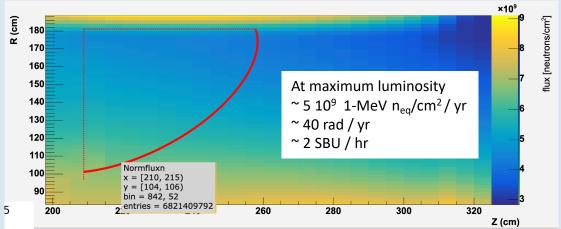


**Expertise** 

dRICH Collaboration: Board of Istitutional Representatives

**DSL:** appointed (acting as TC for the moment)


dRICH Office: Contact Persons of Developing Programs

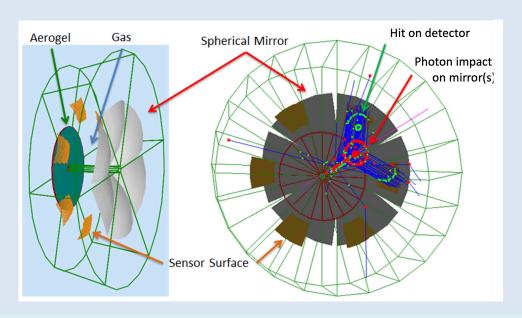

Simulations, Mechanics, Gas Radiator Photo-detector, Front-end Asics, Data Acquisition Aerogel Radiators, Mirrors ≓

Global layout Services

Internal structure

### **EPIC Environment**

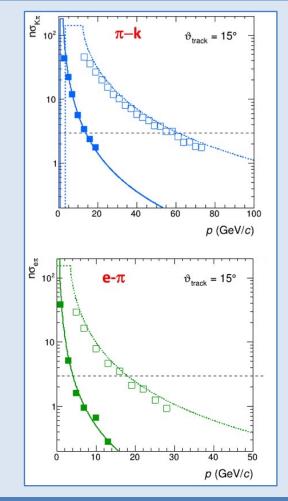





## Magnetic Field

### dRICH Baseline Design

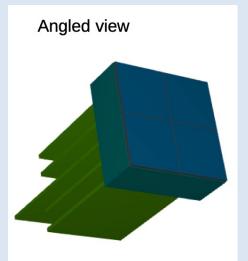
Main features

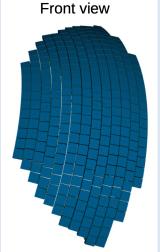

cover wide momentum range 3 - 60 GeV/c work in high (~ 1T) magnetic field fit in a quite limited (for a gas RICH) space



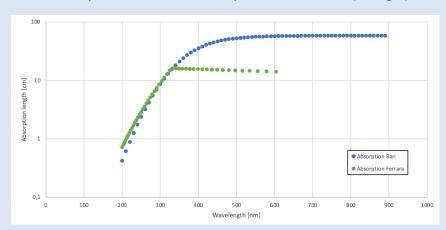

dRICH: cost-effective compact solution

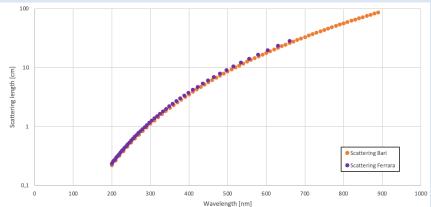
Radiators: Aerogel ( $n_{AERO}$ ~1.02) + Gas ( $n_{C2F6}$ ~1.0008)


Detector:  $0.5 \text{ m}^2/\text{sector}$ ,  $3x3 \text{ mm}^2 \text{ pixel } \rightarrow \text{SiPM option}$ 




#### dRICH Simulation Model

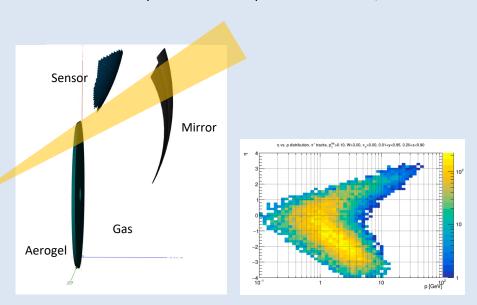


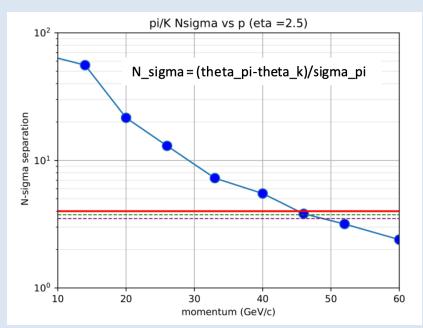


#### Realistic description accounting for material budget





#### Comparison with laboratory characterization (aerogel)



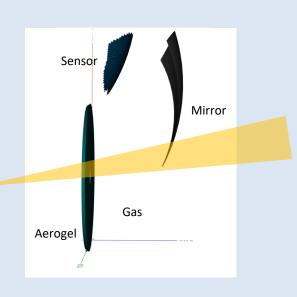



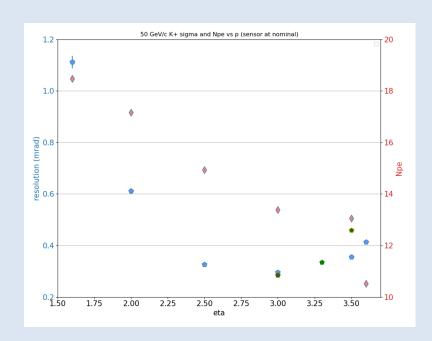

### dRICH Performance: High eta

Preliminary reshaping provides 0.3-0.35 mrad resolution in the 2.5-3.5 rapidity range

This corresponds to  $> 3\sigma$  separation at 50 GeV/c





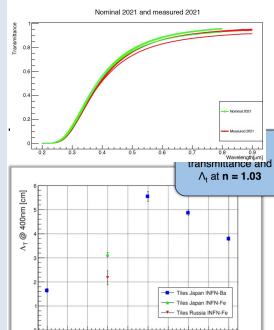


Real optimization in progress accounting for the integration constraints

### dRICH Performance: Low eta

Preliminary reshaping provides 0.3-0.35 mrad resolution in the 2.5-3.5 rapidity range

This corresponds to  $> 3\sigma$  separation at 50 GeV/c



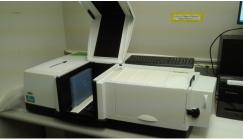


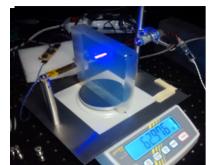

Real optimization in progress accounting for the integration constraints Single particl esimulation

### dRICH Aerogel

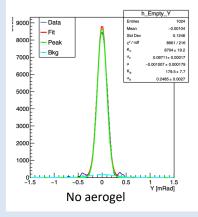
Small samples
Initial evaluation & Reproducibility
In sinergy with ALICE

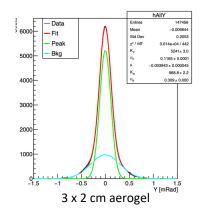
#### Transmittance & Transflectance



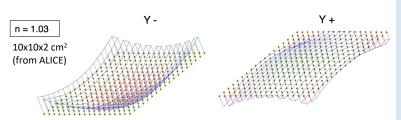


1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05

Refractive index


Density & refractive index



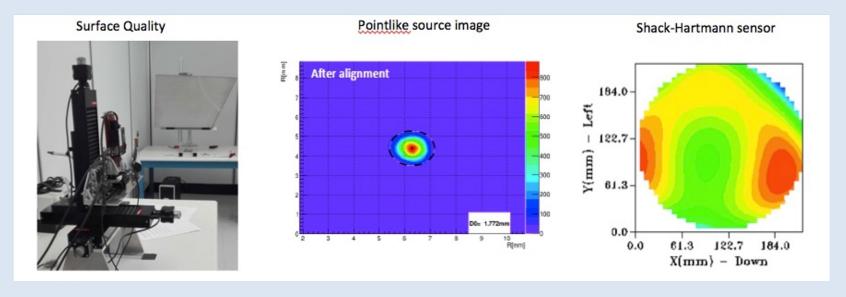



#### Laser spot bradening: Y profile

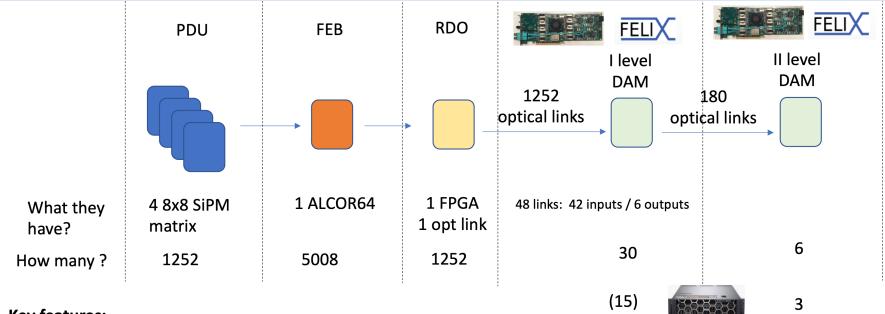





#### Touch Probe: planarity and thickness



#### dRICH Mirrors

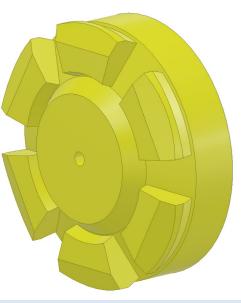

CMA Carbon fiber mirrors offer a cost-effective light & stiff solution roughness driven by mandrel 1-2 nm rms surface accuracy better than 0.2 mrad radius reproducibility better than 1 %

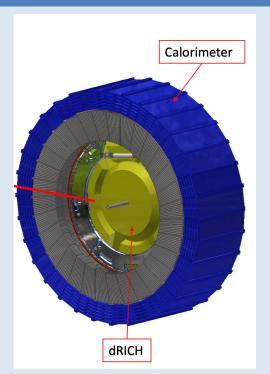
CLAS12 RICH QA laboratory @ JLab being refurnished

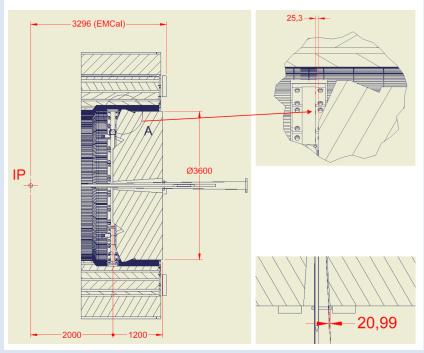


## dRICH Photo-Detector

#### dRICH Readout Scheme





#### **Key features:**


- strong modularity ("1 PDU has all")
- hierarchy of DAM used as data concentrator (input got from DAQ WG)
- Big data reduction happens at DAM-L1 using **interaction tagger** (input from EIC project). Throughput is modelled assuming an interaction tagger signal can reach dRICH DAM with max 2 us latency
- Data available @ DAM-L2 are per sector at FPGA level → potential for further algorithms for data reduction
- DAM-L1 might be eventually stored inside hall (in rack enclosure)

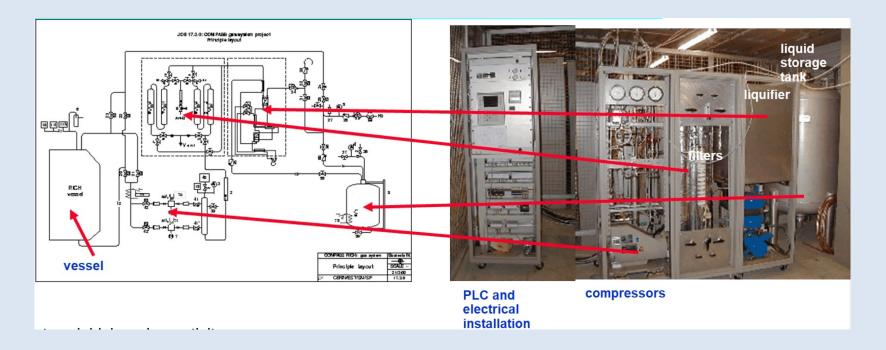
#### dRICH Vessel

- Ф3600 mm x L1200 mm
- Operating pressure up to 200 Pa
- Operating temperature of 22 °C

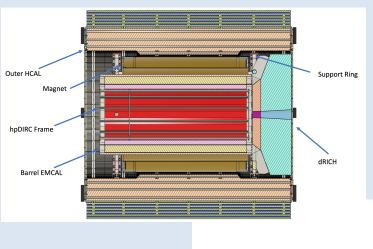




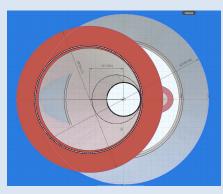



Windows: sandwich panel made of two ~1 mm carbon fiber reinforced epoxy skins separated by 30 mm PMI foam or Al honeycomb (~  $1\% X_0$ ) Shells: 3 mm (inner tube) to 8 mm (outer tube) thick carbon fiber epoxy composite (~  $4\% X_0$ )

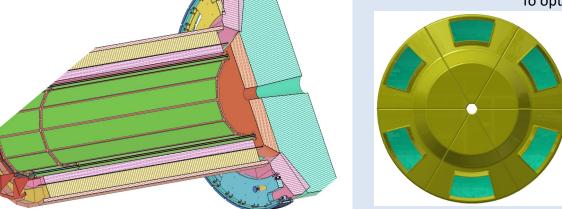
Skins formed with two layers of balanced weave laminate with fibers at 0°/90° and +/- 45° for uniform stiffness


## dRICH Detector Box

Design


# Existing standards / commercial examples



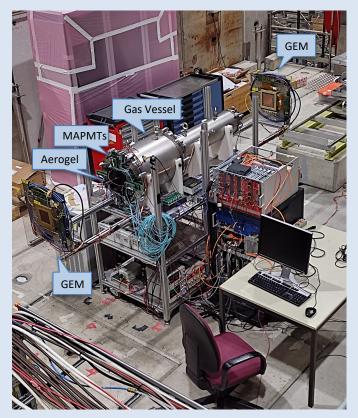

## dRICH Integration

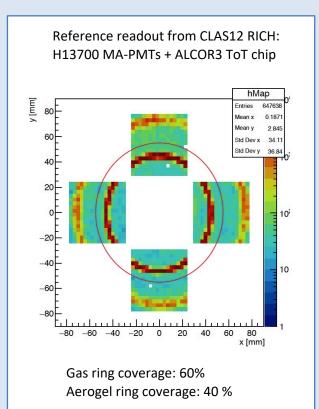


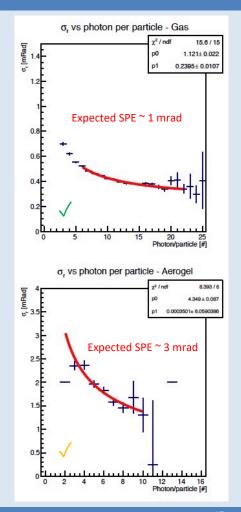
# **OPEN** points



Optimization around the beam To optimize eta range





Other detector material need to be accounted for. Beam pipe impact should be minimized.


Possible segmentation under study

#### **R&D: Status**

Operative prototype commissioned. Double ring imaging achieved. Performance in line with expectations except for aerogel single-photon angular resolution (worse by a factor ~ 1.5)







### R&D: Highlight

Realization of a suitable detector plane for the dRICH prototype (23/10): Design ready, procurement aligned to 2023 test-beam campaign.

Hamamatsu S13361-3050



8x8 array 50 μm cell Excellent fill factor Best DCR

S14160 alternative



MPPC arrays selected with irradiation campaign

Front-end re-design completed

ALCOR v2 (bwetter dynamic range and rate)

ToT architecture, streaming mode ready

- > 50 ps time bin
- > 500 kHz rate per channel
- > cryogenic compatible

#### ALCOR chip

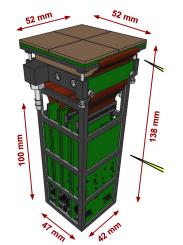


Multi-wafer run done

Version2: 32 channels Extended dynamic range Improved digital time

#### **Integrated Cooling/In-situ annealing**




Cooling plate

Peltier cells

Annealing circuitry







#### **Streaming readout**



2023: 1 RDO per chip

2024: 1 RDO per PDU



Development Kit KC705

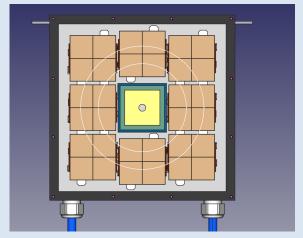
#### **R&D: Milestones**

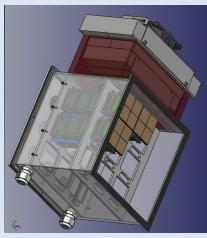
#### 2023: EIC-driven detector plane

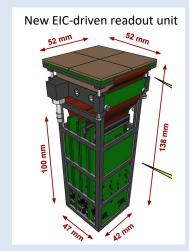
- ✓ Initial characterization of realistic aerogel and mirror components (23/04);
- $\Rightarrow$

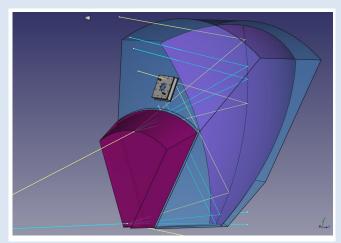
Slide 10

- ✓ Projected performance of the baseline detector as integrated into EPIC (23/06);
  Slide 10
- Assessment of the dRICH prototype performance with the EIC-driven detection plane (23/10).


#### 2024: Real-scale prototype for TDR


Mechanical structure

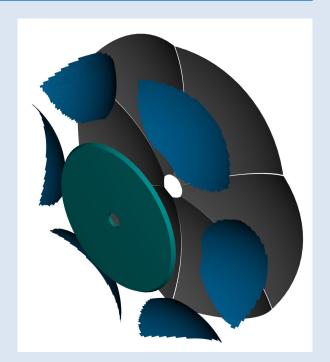

Realistic optics (off-axis)


ALCOR64 FEB + RDO

Aerogel and mirror demonstrator










## **EIC Dual-Radiator RICH**

- 1. EIC forward RICH: Specifications
- 2. dRICH Collaboration: Status
- 3. EPIC: Envelope/radiation
- 4. dRICH Baseline Design
- 5. dRICH Simulations: Model
- 6. dRICH Performance 1
- 7. dRICH Performance 2
- 8. dRICH Aerogel
- 9. dRICH Mirros
- 10. dRICH Photo-detector
- 11. dRICH Readout Scheme
- 12. dRICH Mechanics: Vessel
- 13. dRICH Mechanics: Detector Box
- 14. dRICH Services
- 15. dRICH Integration

- 16 R&D: Status
- 17 R&D: Highlight
- 18 R&D: Milestones
- 19 Construction Schedule
- **20 LLP**
- 21 ES&H
- 22 Commissioning and calibration
- 23 Open Points / Refinements
- 24 Mitigation measures
- 25 Executive Summary



INFN in-kind is expected to concentrate in years 2026-2029 Consistent with the High Level Installation Schedule 2 year shift with respect WBS

LLP could conflict with sensor optimization



## Optimization and Risk Mitigation

| Component        | Baseline                              | Optimization                                            | Possible improvement                                                                                                  |
|------------------|---------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| SiPM             | Hamamatsu<br>H13361-3050HS            | 75 μm cell<br>FBK sensor                                | Larger PDE Better time resolution                                                                                     |
| Aerogel radiator | Aerogel Factory<br>n=1.02             | Refractive index<br>Tile dimensions<br>Tsinghua aerogel | Increase photon yield Reduce edge effects Risk reduction for single vendor                                            |
| Gas radiator     | SIAD<br>C <sub>2</sub> F <sub>6</sub> | Gas mixture Early procurement Pressurized vessel        | Reduced environment impact (global warming) Limit dependence on market & regulations Inert (noble) gas, dynamic range |
| Mechanics        | Tecnavan Carbon fiber composite       | Al composite                                            | Cost reduction                                                                                                        |
| Mirrors          | CMA Carbon fiber composite            | Mold material Different core strucuture                 | Better shape quality                                                                                                  |
| Cooling          | Al plate                              | Carbon foam plate                                       | Reduce material budget                                                                                                |

#### ES & H

1 year C<sub>2</sub>F<sub>6</sub> losses corresponds to 1 intercontinental flight CO<sub>2</sub> emission requires to minimize losses in the recirculating system

About 2-2.5 kW per detector box requires liquid cooling, air circulation + interlock

On-site annealing requires single-sensor temperature (optical) control