# **dRICH Benchmarks and Bug Fixes**

**Christopher Dilks** dRICH Simulation Meeting 29 June 2023

### **Overview of ePIC Software**





### **Overview of ePIC Software**





# **Our Benchmark Design\***

\* Not standard! But well-aligned with software principle of modularity!



# **Analysis Algorithms**

### SimHitAnalysis

- Number of incident photons (predigitization and QE)
- Incident photon spectrum

### RawHitAnalysis

- ADC
- TDC
- Photon spectrum for digitized hits

### CherenkovPIDAnalysis

- NPE
- Cherenkov angles and residuals
- Refractive index
- PDG with highest weight
- Dependence on p and  $\eta$
- ReconstructedParticleAnalysis
  - Fraction with PID PDG == true PDG

# **Continuous Integration Everywhere**



Examples:

### Geometry

- GDML Production
- Overlap checks

### Reconstruction

- Coverage
- Unit tests

### Benchmarks

- Detector Performance
- Physics Performance

### **Triggered by Pull Request commits**

#### C. Dilks

# **Continuous Integration in drich-dev**

#### Pull request review and approval has been much slower than development

- Not many available reviewers...
- We've been prioritizing developing features and fixing bugs...

#### Continuous Integration in drich-dev allows:

- Full control over which versions of each repository is used
  - Namely, EICrecon and reconstruction\_benchmarks have separate, unmerged branches for IRT
  - Allows quick testing of ideas without waiting for PR approval in each repository
- Allows for testing of things which are not easy to test in a single repository
  - Example: pixel gap cuts
    - Need high-stats simulation + dRICH (standalone) geometry  $\rightarrow$  too much for a unit test?
    - Dependent on an EICrecon library  $\rightarrow$  may not be accepted as a benchmark
    - Easiest solution: test regularly in drich-dev and hope for a better approach in the future
- Allows us to launch moderate statistics jobs for performance studies
  - Though this should really be done in reconstruction\_benchmarks (TODO after IRT is fully approved in ElCrecon)

### drich-dev Continuous Integration Matrix





### drich-dev Continuous Integration: Additional Tests

**Pixel Gaps** 

**Track Propagation** 



### **Benchmark: Photon Spectra**





Number of digitized hits nhits dist Entries Mean Std Dev 6.482 Nui



### **Benchmark: Digitization**









#### **dRICH Benchmarks**

11

### **Benchmark: Aerogel PID**





















Highest PDG Weight for Aerogel







#### Focusing on example $\eta$ scan

NOTE: all of this is <u>after</u> the updates for PDUs and service material

C. Dilks

#### dRICH Benchmarks

12

### **Benchmark: Gas PID**







C. Dilks













Estimated Cherenkov Angle Residual for Gas - ZOOM

Highest PDG Weight for Gas



Estimated Photon 0 vs o for Gas



**PROBLEM!** 

493



MC Refractive Index for Gas



# Number of Propagated Track Points

- Aerogel:  $5 \rightarrow$  leave as is
- Gas:  $10 \rightarrow$  increase to 30

# Avoid Propagation to Optical Boundaries

- Example for 4 planes:





### Do Not Propagate Beyond the Mirror







**Beyond the Mirror** 



### An Outstanding Issue...

### https://github.com/eic/EICrecon/issues/564

Tracks which miss the dRICH cause a lot of error pollution and unnecessary propagation attempts

| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
|--------------|-------|-------------|---------|-----|------|-------|-------|----|------|------|------|--------|
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps  |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps) |
| ProjectTrack | ERROR | Propagation | reached | the | step | count | limit | of | 1000 | (did | 1000 | steps  |

Possible solution: see linked Github issue

A good entry-level task



### **Benchmark Gas PID after Bug Fixes**



















Highest PDG Weight for Gas





mcRindex\_Gas Entries Mean 1.001 Std Dev 1.982e -06

492

MC Refractive Index for Gas



1 1.005 1.01 1.015 1.02 1.025 1.03 8.99 0.99

300

250

200

150 100



n [GeV



### **Benchmark: Merged Aerogel + Gas PID**

















### **Next Steps**

# Initial IRT in ElCrecon PR

- https://github.com/eic/EICrecon/pull/707

# Open PRs for

- Track propagation bug fixes
- PID Merging of Aerogel and Gas
- Linking PID to Reconstructed Particles
- Updates for PDUs
  - Geometry: Marco, should we keep vessel thickness and filter thickness? Are the service dimensions okay?
  - Reconstruction