

Nicolas Schmidt (ORNL)

Angular resolution studies - concept

Reconstructed angle:

 \rightarrow create ACTS projection surface at entrance of Cherenkov detectors (cylinder surface for barrel, disk surface for endcaps)

- $ightarrow z_{
 m pfRICH} = -120.6$ cm, $R_{
 m DIRC} = 70.9$ cm, $z_{
 m dRICH} = 197$ cm
- \rightarrow momentum vector of track at projection surface provides position and angles
- True angle:

 \rightarrow deactivate cherenkov light propagation in npsim \rightarrow truth hits in aerogel (pfRICH and dRICH) or bars (DIRC) \rightarrow use hit closest to projection surface as reference for angle and position (angle obtained from hit momentum vector)

- Same approach used for z position resolution for DIRC
- Tracking studies processor used ([link])
- Simulations based on Brycecanyon geometry $\rightarrow p = 0.4 - 20$ GeV electrons generated \rightarrow uniform in ϕ and $-4 < \eta < 4$
- Reconstruction with truth seeding

Angular resolutions vs momentum

- Distributions fitted with Gaussian
- Good resolutions in central and backward region
- Forward region worse in comparison to rest \rightarrow maybe due to TOF disk material

Angular resolutions vs momentum

- ${\small ullet}$ Fine binning of $\Delta\eta=0.25$ over the range of $-3.75<\eta<3.75$
- Distributions fitted with Gaussian
- Good resolutions in central and backward region
- Forward region φ resolution worse in comparison to rest \rightarrow maybe due to TOF disk material
- θ resolution comparable among all regions

N. Schmidt (ORNL)

3/5

z position resolutions vs momentum

- I z positon resolution determined for hpDIRC → necessary input for internal scattering estimation
- Technical problem: cylindrical ACTS propagation surface compared to DIRC bar structure

 $\rightarrow \varphi$ dependence of resolution due to difference in radial position between rec. and true

• Region around $\eta \approx$ 0 well constrained

 \rightarrow 1–2mm position resolution

N. Schmidt (ORNL)

Summary

- Detailed φ , θ and z resolutions for Cherenkov detectors determined in Brycecanyon setup \rightarrow finely binned in η and momentum
- Technical limitations in current studies in assocication of truth and reconstructed information
 - \rightarrow propagation to fixed surfaces versus hits in cherenkov detector volume
- Overall good resolutions found
 - \rightarrow forward generally found to be worst region
- Studies can easily be repeated with latest detector setup (after tracker update)