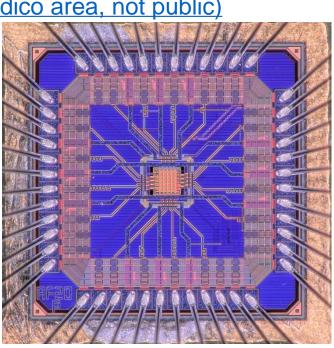
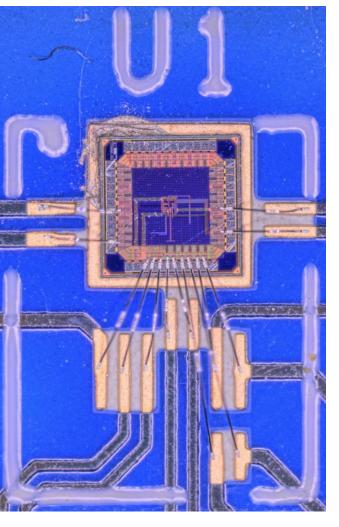


EIC-UK WP1 Face-to-face Meeting

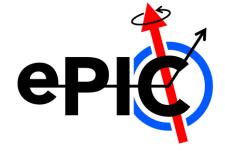
James Glover, Laura Gonella, Peter Jones, Stephen Maple, Li Long, Eve Tse

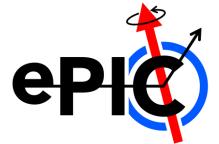
Wednesday, 28th June 2023




Birmingham Instrumentation Laboratory for Particle physics BILPA and Applications

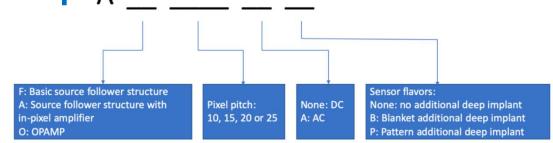
Recap: The last F2F

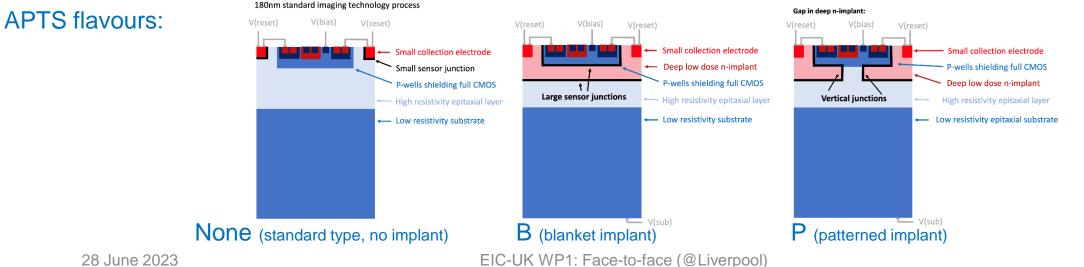

- MLR1 APTS-SF DAQ system obtained & commissioned. <u>link (old EIC-UK</u> <u>WP1 indico area, not public)</u>
- MLR1 LVDS/CML test structures obtained, DAQ system commissioned (via Xilinx's Vivado suite). – <u>link (old EIC-UK WP1 indico area, not public)</u>
- Mounting and wire bonding procedures set up for both the above structures.


Since the last F2F

- Birmingham has been 1 of 4 APTS-SF chip mounting/bonding sites (others being CERN, Strasbourg & Liverpool).
- Characterising chips prior to mounting (resistance measurements, probed chips in GelPak).
 - Minimises chip failures post-bonding.
- Non-conductive chip mounting options (to reduce radiation length of test structures) have been explored in collaboration with CERN colleagues.
- Test site for APTS-SF split 2 & 3 devices.
 - Pulsing tests performed at B'ham, majority of Fe-55 testing performed at L'pool.
- Contributed split 1, 2, 3 & 4 comparison plots to the pool of plots approved for publication by ITS3.
- Options for serial powering scheme for the EIC-LAS.
- Detector layout simulations.

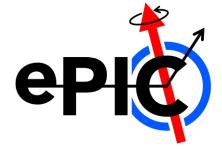
NIVERSITYOF BIRMINGHAM


Birmingham Instrumentation Laboratory for Particle physics PA and Applications

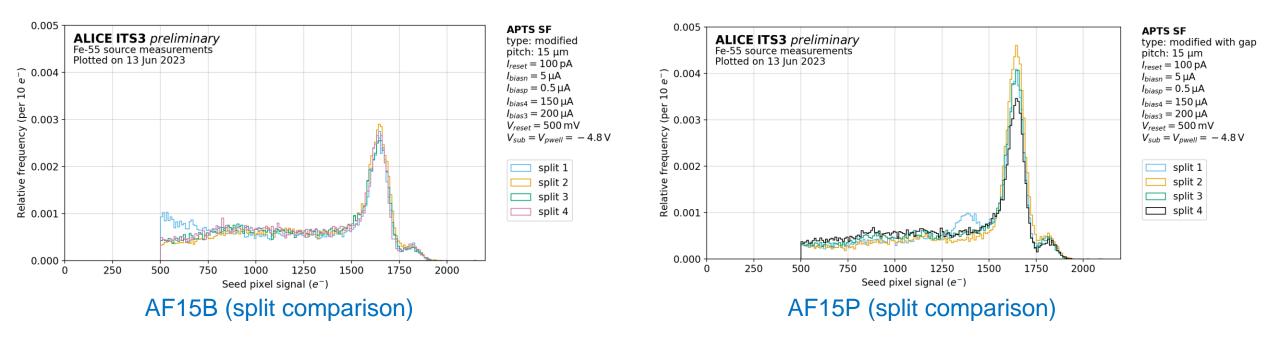

Characterisations of APTS - 1 A

MAPS constructed in 65nm CMOS technology.

- 3 APTS structures: F (source follower), A (in-pixel amp) & O (OpAmp).
- 4 pixel pitches (in 4×4 pixel array).
- Both DC and AC coupled versions.
- 3 "flavors" of deep implant: None, B & P.

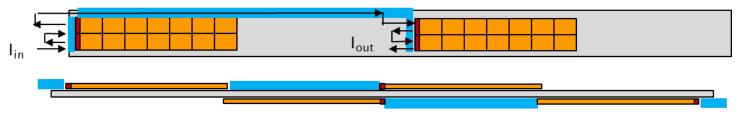


Additionally, there have been 4 different wafers ("splits") with small variations to the doping of the P-well and N-implant.



Characterisations of APTS - 2

- Birmingham has investigated pitch, flavour and split variations of DC-coupled, source follower structures.
- Plots approved for publication during ITS3 June '23 approval session.



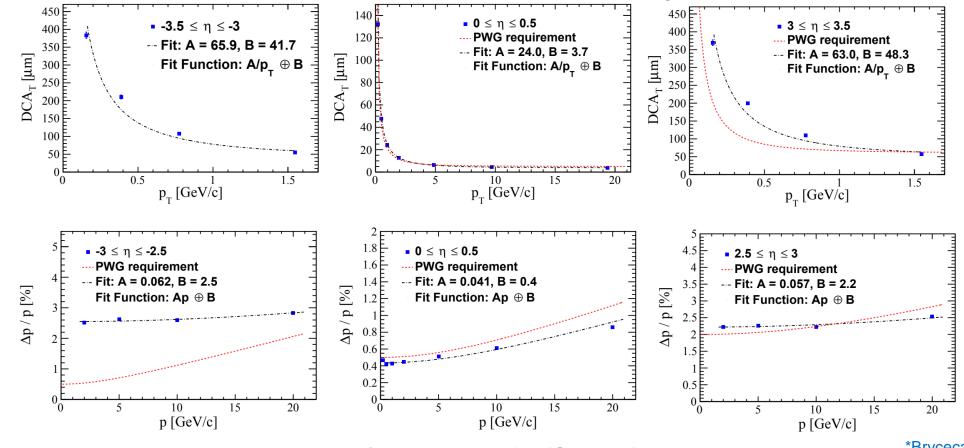
Birmingham Instrumentation Laboratory for Particle physics and Applications

Serial powering

- Serial powering scheme chosen as baseline for the ePIC SVT
 - Provides lowest material option
- Shunt-LDO placement on a dedicated powering chip outside the sensor
 - Allows re-using of ITS3 sensor on-chip power distribution; Does not require modification of sensor periphery; Can be prototyped and fabricated in cheaper technology
- Serial powering scheme drafted for sagitta layers
 - Current flowing between sensor segments on each side of the stave
 - Factor 4 current reduction for L4, factor 2 current reduction for L3

L4 serial powering scheme; top - stave top view, bottom - stave side view

 Number of sensor low voltage and bias cables estimated and provided to EIC project engineers for integration exercise



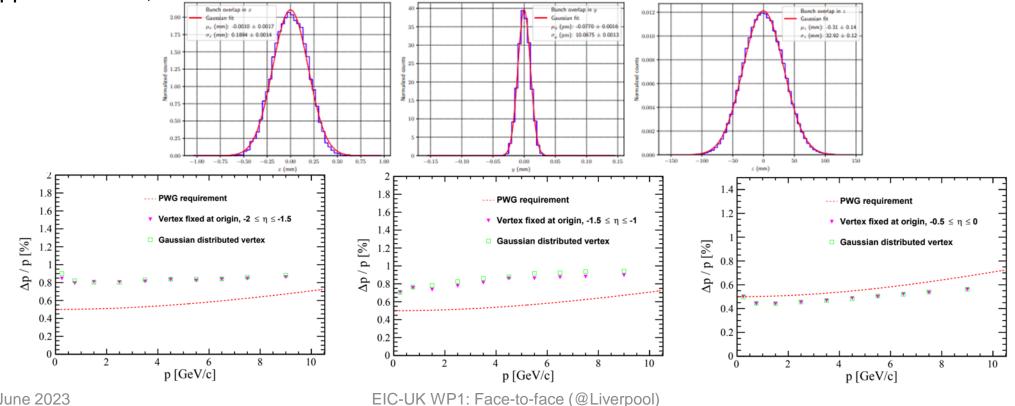
Birmingham Instrumentation Laboratory for Particle physics BILPA and Applications

Detector layout simulations - 1

• Parametrised momentum and vertex resolutions with ePIC tracker configuration*.

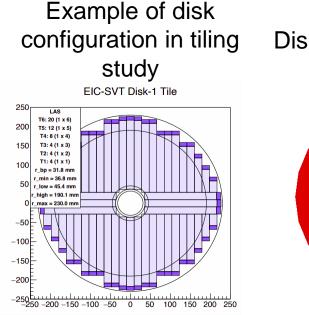
EIC-UK WP1: Face-to-face (@Liverpool)

*Brycecanyon 22.11.2 (juggler)

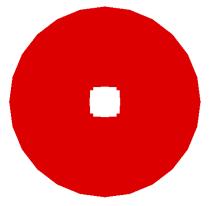

UNIVERSITY OF BIRMINGHAM

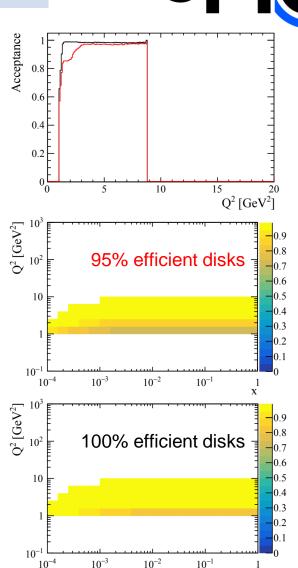
Detector layout simulations - 2

- Study of beam spot effect on the tracking performance.
 - Minimal degradation of momentum resolution in specific pseudorapidity intervals where particles traverse support material; no effect on the vertex resolution.



Birmingham Instrumentation Laboratory for Particle physics BILPA and Applications

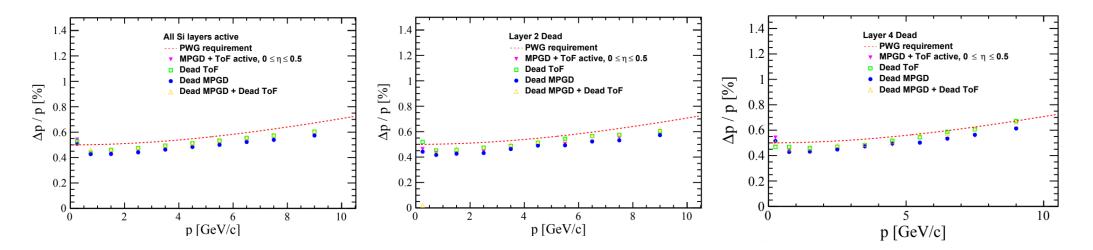

epic


Detector layout simulations - 3

- Study of acceptance at large eta.
- Realistic disk design implemented in simulation.
- Higher x lower Q² bins lose acceptance.
- Acceptance > \sim 80% for all bins Q² > 1GeV² for 100% efficient disks.

Disk implementation in simulation

EIC-UK WP1: Face-to-face (@Liverpool)



Detector layout simulations - 4

- Study of barrel MPGD layer contribution to tracking.
 - Different combinations of active silicon, MPGD and Time of Flight (TOF) layers.
 - Momentum and vertex resolution fully defined by SVT, with small improvement by TOF layer; no recovery in performance with the MPGD layer active in case of failure of one silicon layer; barrel MPGD layer contribution in pattern recognition only.

Going forward – short term plan

- Continue with MLR1 APTS-SF comparisons.
 - Look at leakage current comparisons (already started).
- Await ER1 chips.
 - Offer to help with chip mounting/wire-bonding again.
 - Commission ER1 DAQ set-up.
- Await ER1 RAL LVDS/CML test structures.
 - Again, happy to help mounting, bonding and testing.
 - Is KCU105 still to be used as the PRBS generator?
- Continue with conceptualisation of serial powering scheme.
 - Focus on Outer Barrel Layers (UK focus) but will also consider options for the disks.
 - Added complexity with the ER2 design confirmation of power required on both left and right endcaps.
- Detector layout simulations to continue/develop.

Going forward – final R&D and construction

Areas where B'ham wants to contribute:

• Powering (SP = Serial Powering):

- Sensor characterisation:
 - ITS3 ER2 and ER3
 - EIC LAS v1 and v2
 - Production testing QC/QA (incl. wafer probing)
- Modules (an assembly of sensors on an FPC):
 - Prototypes: assembly & testing
 - Pre-Production: assembly & testing
 - Production: assembly & testing (QC/QA)
- Tooling:
 - Module assembly tooling: prototypes, pre-prod, prod

- Regulator characterisation
- Data and grounding schemes development
- Current source development and testing
- Prototypes SP chain testing
- Pre-production SP chain testing
- Production SP chain validation
- DAQ (SW/FW/HW needed for testing of various objects) in connection to SP:
 - Electrical staves: prototype testing
 - Electrical staves: pre-production testing
 - Electrical staves: production testing
 - L3 and L4 testing (after integration)

Birmingham Instrumentation Laboratory for Particle physics BILPA and Applications

Additional slides