EIC Dual-Radiator RICH

EPIC PID Review

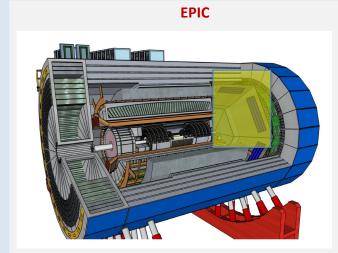
Contalbrigo Marco – INFN Ferrara

- 1. Title
- 2. dRICH Collaboration
- 3. EIC forward RICH
- 4. dRICH Baseline Design
- 5. dRICH Organization
- 6. dRICH Layout
- 7. dRICH Gas Radiator
- 8. dRICH Aerogel Radiator
- 9. dRICH Mirrors
- 10. EPIC Environment
- 11. dRICH Photo-detector
- 12. dRICH Readout Scheme
- dRICH Services
- 14. dRICH Simulation: Sensors Model
- 15. dRICH Simulation: Aerogel Model
- 16. dRICH Simulation: Resolution
- 17. dRICH Simulation: Momentum Reach

- 18. R&D: Status
- 19. R&D: Highlight
- 20. R&D: Milestones
- 21. dRICH Construction Schedule
- 22. Optimization & Risk Mitigation
- 23. Environment, Safety & Healt
- 24. Quality Assurance
- 25. Calibration & Commissioning
- 26. Executive Summary

Charge 1

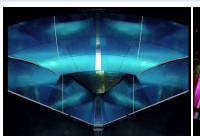
Charge 2


Charge 3

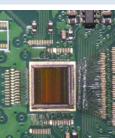
Charge 6

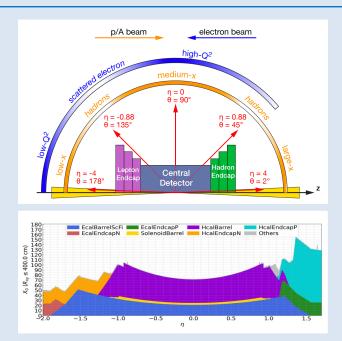
dRICH Collaboration

Compact cost-effective solution for particle identification in the high-energy endcap at EIC



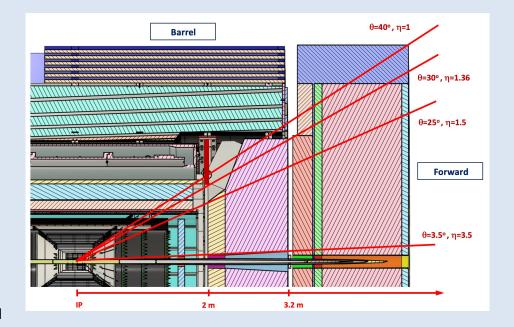
Background Expertise:


CLAS12 RICH COMPASS RICH ALICE HMPID DARKSIDE ALCOR



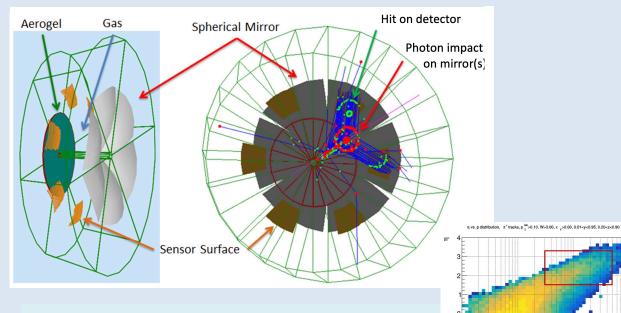
Forward particle detection

Hadron ID in the extended 3-50 GeV/c interval


Support electron ID up to 15 GeV/c

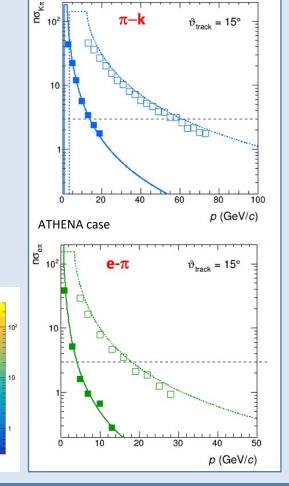
Essential for semi-inclusive physics due to absence of kinematics constraints at event-level

EIC Forward RICH


		Elec	trons and Photo	π/K/p		
η	Nomenclature	Resolution $\sigma_{\rm E}$ /E	PID	Min E Photon	p-Range	Separation
1.0 to 1.5						
1.5 to 2.0		2%/E ⊕ (4*-12)%/√E ⊕ 2%	3σ e/π		≤ 50 GeV/c	≥ 3σ
2.0 to 2.5	Forward Detectors		up to 15 GeV/c	50 MeV		
2.5 to 3.0						
3.0 to 3.5						

dRICH Baseline Design

Main features

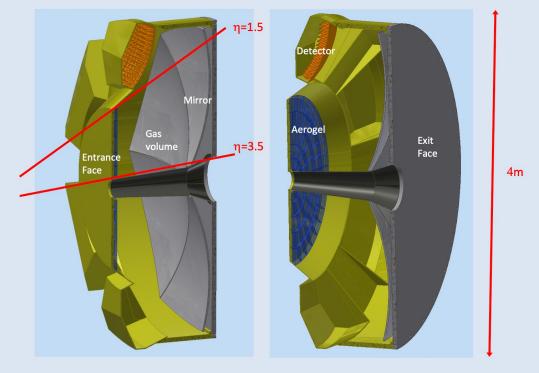

cover wide momentum range 3 - 50 GeV/c work in high (~ 1T) magnetic field fit in a quite limited (for a gas RICH) space


Radiators: Aerogel (n_{AERO} ~1.02) + Gas (n_{C2F6} ~1.0008)

Detector: $0.5 \text{ m}^2/\text{sector}$, $3x3 \text{ mm}^2 \text{ pixel } \rightarrow \text{SiPM option}$

p [GeV]²

dRICH Organization



dRICH Layout

Simplified representation

3D mechanical model

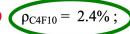
Windows: sandwich panel made of two ~1 mm carbon fiber reinforced epoxy skins separated by 30 mm PMI foam or Al honeycomb (~ $1\% X_0$)

Shells: 3 mm (inner tube) to 8 mm (outer tube) thick carbon fiber epoxy composite (~ 4% X₀)

Skins formed with two layers of balanced weave laminate with fibers at 0°/90° and +/- 45° for uniform stiffness

 C_2F_6

50 Ge	50 GeV/c pions and kaons shot at eta 2.5											
Gas	Npe(pi /K)	Th_pi	Th_K	Sig_pi	Sig_K	N_Sig						
C2F6	16.03/ 14.94	36.8	35.67	0.32	0.33	3.5						
C4F10	24.8/2 3.8	48.63	47.8	0.29	0.30	2.8						



Chromaticity

$$\Delta\theta = \theta_{\check{C}}(\lambda=300\text{nm}) - \theta_{\check{C}}(\lambda=600\text{nm})$$

$$\rho = \Delta \theta / \theta_{\check{C}}(\lambda = 300 \text{nm})$$

$$\rho_{\rm C2F6} = 1.8\%$$
;

Assume dRICH volume ~ 20 m³

 C_2F_6 density 5.73 Kg/m3 \rightarrow 114 kg

Initial minimal quantity ~ 200 kg

~ 500 kg could be enough for 10 yr of operation

Initial survey:

Several distributors contacted: availability confirmed by two:

- SIAD S.p.A.
- Resonac Europe GmbH

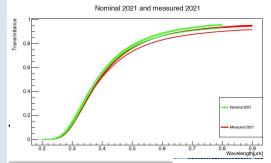
Yearly leaks are difficult to estimate:

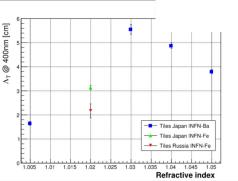
- Filling and recovery operations 6%
- Filtering and maintenance 3%
- Leaks 10%
- Sampling, analysis, etc.

30 kg /yr emission \rightarrow 300 tCO₂ /yr comparable to one intercontinental flight /yr

CERN new gas systems qualification standard:

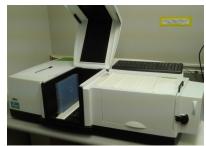
Target Leak flow at reference conditions <1*10-3 STD cc/s

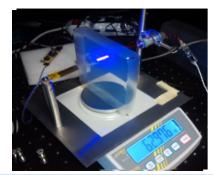

New standards should reduce significantly the losses and environmental impact

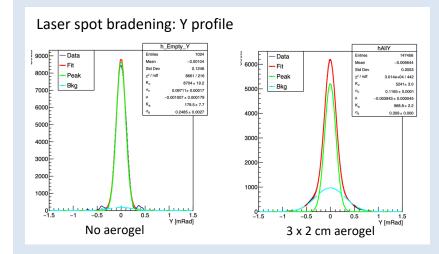

dRICH Aerogel Radiator

Aerogel Factory (BELLE-II)

Initial evaluation & Reproducibility on small samples in sinergy with ALICE


Transmittance & Transflectance

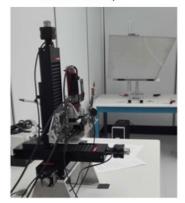




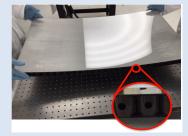
Density & refractive index

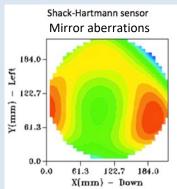
dRICH Mirrors

CMA Carbon fiber mirrors (HERMES, AMS, LHCb, CLAS12)

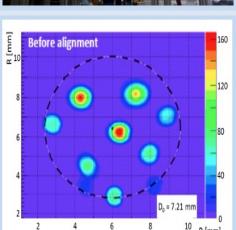

cost-effective light & stiff solution:

roughness driven by mandrel 1-2 nm rms

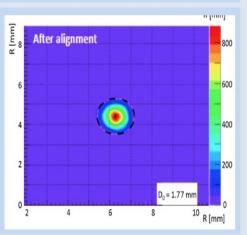

surface accuracy better than 0.2 mrad

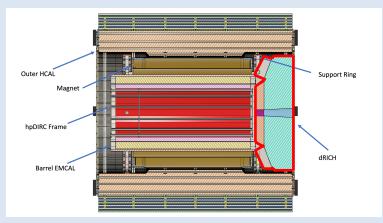

radius reproducibility better than 1 %

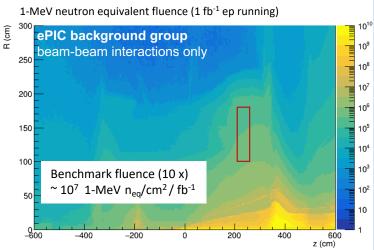
Surface Quality

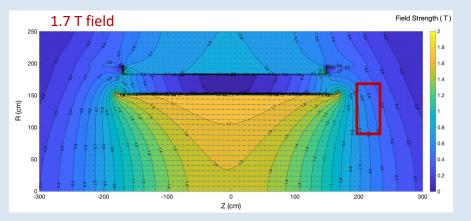


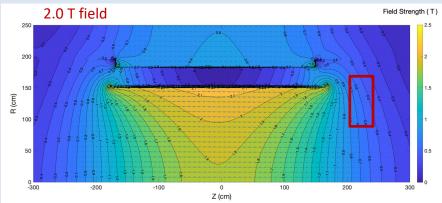
CLAS12 RICH QA laboratory @ JLab being refurnished











EPIC Environment



Strong (~ 0.7 T) magnetic field, not uniform Moderate radiation level (~ 10^{10} n_{eq}/cm^2 after 1000 fb⁻¹)

dRICH Photo-Detector

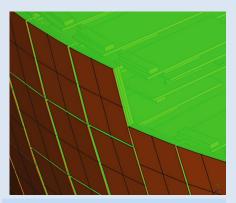
Photon Detector Unit (PDU):

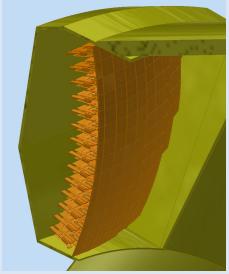
Compact to minimize space

- 4x Hamamatsu S13361-3050HS SiPM arrays
- 4x Front-End Boards (FEB)
- 4x ALCOR chip (ToT discrimination)
- 1x Read-Out Board (RDO)
- 1x Cooling plate (< -30 C)

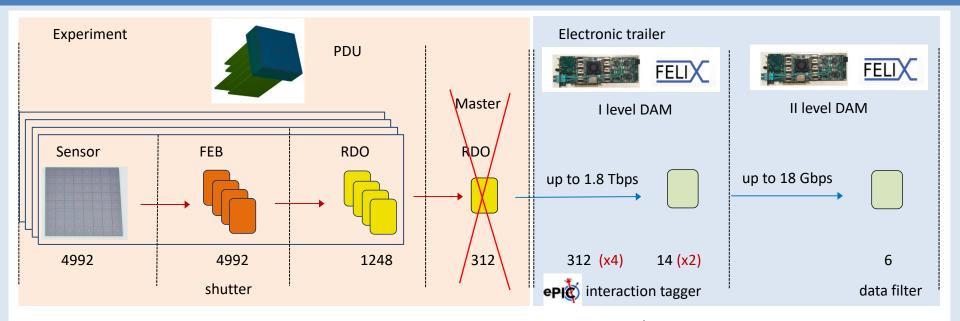
Active area is shaped to resemble the focal surface and best exploits the focalization

Detector box:


Shaped to fit the space


Quartz window

Cooling for sensors and electronics


Power distributing patch panel

Heat insulation

dRICH Readout Scheme

Reduce complexity at the detector level (spare space, custom boards, FPGA/SEU)

Maximise modularity (detector shaping) and capability (data stream)

DAM Hierarchy: Maximum data rate capability till DAM-L1

Big data reduction at DAM-L1 with external input (2 μs latency interaction tagger)

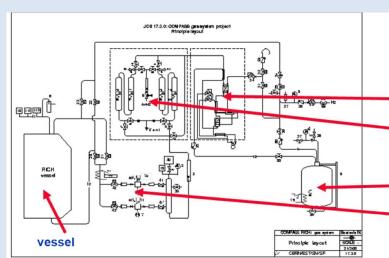
DAM-L2 data aggregation per sector allows for effective data-reduction algorithms

DAM-L1 might be eventually stored in the experimental Hall (rack enclosure)

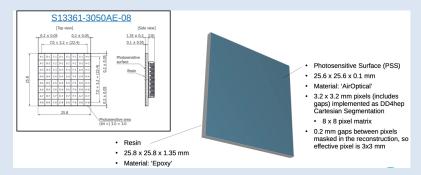
dRICH Services

Commercial Examples:

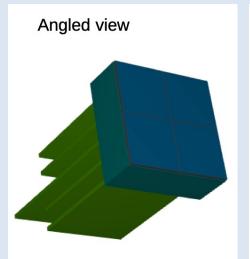
Power supply

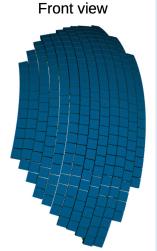

Cooling plants

Existing systems & standards:

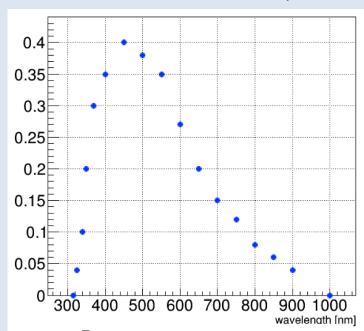

COMPASS

C₄F₁₀ recirculating and purgingn system





dRICH Simulation: Sensor Model

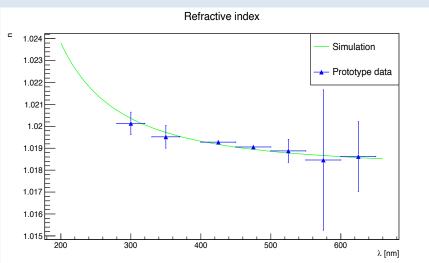


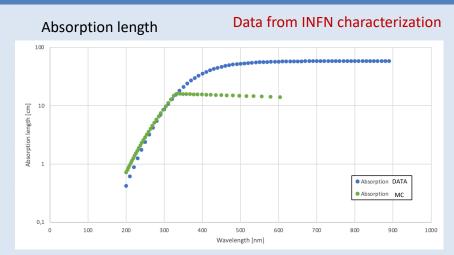
Realistic description accounting for material budget

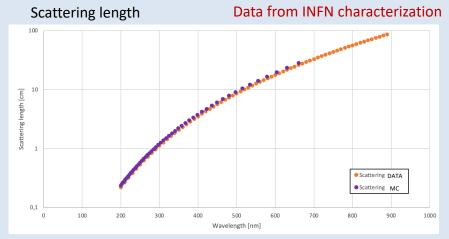
Photon detection efficiency

dRICH Simulation: Aerogel Model

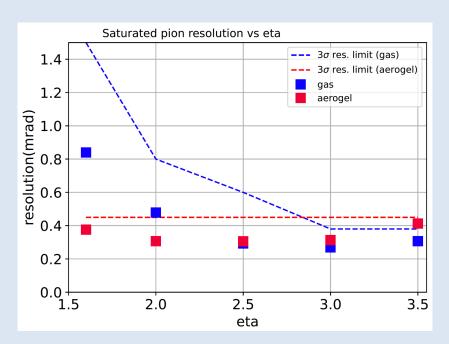
Comparison DATA vs MC model

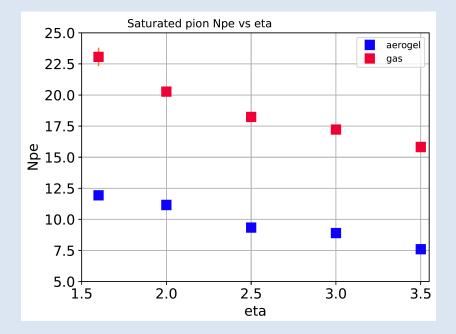

DATA: Aerogel Factory samples


MC: EPIC parameterizaion


Chromatic dispersion (major expected contribution to resolution)

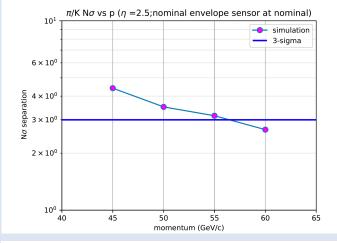
Data from dRICH prototype


dRICH Simulation: Resolution

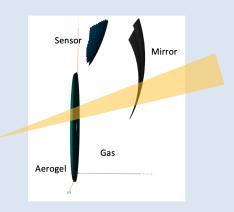

Preliminary optimization of the dRICH optics inside EPIC

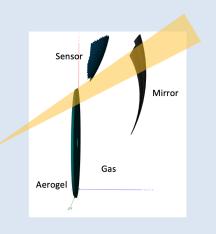
Magnetic field and track resolution accounted for, results averaged over azimuthal angle (φ)

With single mirror, best focalization in the most demandig 2.5-3.5 pseudo-rapidity range to get ~ 0.3 mrad resolution

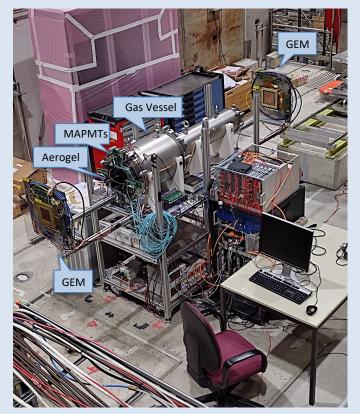

 $> 3\sigma$ separation in the wanted momentum range (i.e. at maximum momentum)

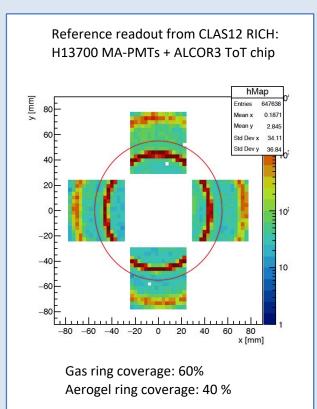


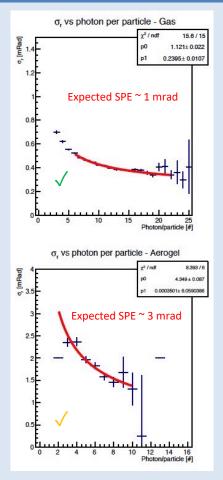

dRICH Simulation: Momentum reach


Momentum reach

Interplay between radiators





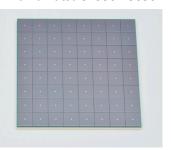


R&D: Status

Operative prototype commissioned. Double ring imaging achieved. Performance in line with expectations except for aerogel single-photon angular resolution (worse by a factor ~ 1.5)

Optics at variance with respect EIC

R&D: Highlight


Realization of a suitable detector plane for the dRICH prototype (23/10): Design ready, procurement aligned to 2023 test-beam campaign.

Hamamatsu S13361-3050

8x8 array 50 μm cell Excellent fill factor Best DCR

S14160 alternative

MPPC arrays selected with irradiation campaign

Front-end re-design completed

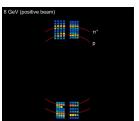
ALCOR v2 (bwetter dynamic range and rate)

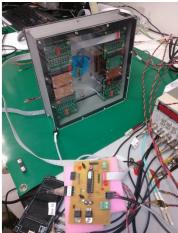
ToT architecture, streaming mode ready

- 50 ps time bin
- 500 kHz rate per channel
- cryogenic compatible

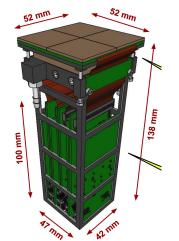
ALCOR chip

Multi-wafer run done


Version2: 32 channels Extended dynamic range Improved digital time


Cooling plate

Peltier cells


Annealing circuitry

Streaming readout

2023: 1 RDO per chip

2024: 1 RDO per PDU

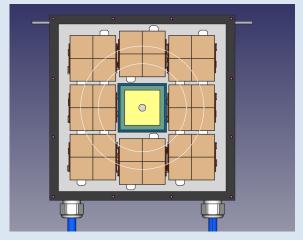
R&D: Milestones

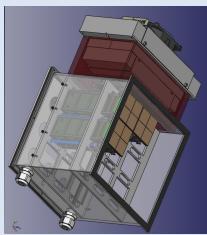
2023: EIC-driven detector plane

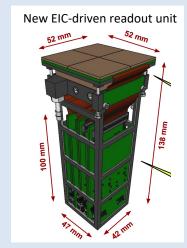
- ✓ Initial characterization of realistic aerogel and mirror components (23/04);
- - Slide 8
- ✓ Projected performance of the baseline detector as integrated into EPIC (23/06);
 - Slide 16
- ✓ Assessment of the dRICH prototype performance with the EIC-driven detection plane (23/10).

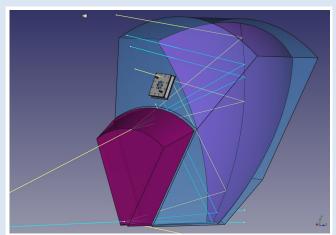
Slide 19

Test beam planned in August and October 2023


2024: Real-scale prototype for TDR (1 sector)


Mechanical structure


Realistic optics (off-axis)


ALCOR64 FEB + RDO

Aerogel and mirror demonstrator

dRICH Construction Schedule

EIC - Working File Data Date: 02-Jan-20		EIC - Activities with Gantt TASK filter: WBS Path 06.10.04.02.									
WBS Path	Activity ID	Activity Name		Original Ouration	Start	Finish	2022 2023 	2024 S V J F N J J A	2025 S	2026	2027 2028
Project: E	Project: ECE06 EIC - Working File			1797	01-Oct-21	12-Dec-28					
WBS: EC	WBS: ECE06.10 EIC Detector			1797	01-Oct-21	12-Dec-28					
WBS: ECEC	WBS: ECE06.10.04 Particle Identification (PID)			1797	01-Oct-21	12-Dec-28					
WBS: ECE0	WBS: ECE06.10.04.02 Dual Ring Imaging Cherenkov Detector (dRICH)			1797	01-Oct-21	12-Dec-28					
10.04.02	EIPICH _L_FY22	6.10.04.02 - EIPICH - FY22 Labor Actuals		250	01-Oct-21	30-Sep-22					
10.04.02	E1004_20000	PDR - Preliminary Design, Beam Test & Assessment (dRICH)		110	03-Oct-22	15-Mar-23					
10.04.02	E1004_20010	Prototyping (dRICH)		313	03-Oct-22	05-Jan-24					
10.04.02	E1004_20020	Specifications 100% Defined for 3A Procurement (dRICH)		0		31-Oct-22	•				
10.04.02	E1004_20030	PDR _ Preliminary Design Complete (dRICH)		0		15-Mar-23	•				
10.04.02	E1004_20040	FDR - Final Design & Finalize dRICH Design with All Required Services (dRICH)		109	16-Mar-23	17-Aug-23					

SiPM may require longer engineering to reach the best performance (e.g. match temperature treatments)

10.04.02	E1004_20580	AWARD: Photo Sensors (dRICH)	1	02-Oct-23	03-Oct-23	ı
10.04.02	E1004_20660	AWARD: SiPMs Cooling System (dRICH)	1	02-Oct-23	03-Oct-23	ı
10.04.02	E1004_20730	AWARD: Mirror Alignment System (dRICH)	1	02-Oct-23	03-Oct-23	
10.04.02	E1004_20800	AWARD: Cooling System (dRICH)	1	02-Oct-23	03-Oct-23	ı
10.04.02	E1004_20590	VENDOR EFFORT: Photo Sensors (dRICH)	360	03-Oct-23	17-Mar-25	
•						
10.04.02	E1004_20080	Write SiPMs Requisition (dRICH)	0		31-Dec-24	•
10.04.02	E1004_20090	SiPMs Procurement Effort with Technical Support (dRICH)	410	02-Jan-25	19-Aug-26	
10.04.02	E1004_20630	RCV: Photo Sensors (dRICH)	1	17-Mar-25	18-Mar-25	

Aerogel may require longer engineering to reach the best performance (e.g. mass production efficiency)

	10.04.02	E1004_20530	AWARD: Aerogel (dRICH)	1	02-May-25	02-May-25
	10.04.02	E1004_20320	Test & Q.C. First Article Mirror (Includes Developing Test Plan) (dRICH)	115	05-May-25	16-Oct-25
ш	10.04.02	E1004_20490	VENDOR EFFORT: C2F6 Gas Recovery System (dRICH)	180	05-May-25	23-Jan-26
	10.04.02	E1004_20540	VENDOR EFFORT: Aerogel (dRICH)	500	05-May-25	04-May-27

Readiness planned 2 years before installation might result in a too aggressive schedule (see above)

10.04.02	E1004_20260	Ready for Installation (dRICH) (BNL)	0		09-May-28
10.04.02	E1004_20140	SIPMT & SIPMT Test, Final Acceptance (dRICH)	20	13-Nov-28	12-Dec-28
10.04.02	E1004_20130	SIPMT & SIPMT PCBoard Vendor Delivery (dRICH)	1	12-Dec-28	12-Dec-28
10.04.02	E1004_20150	Ready for Installation (dRICH)	0		12-Dec-28

Optimization and Risk Mitigation

Component	Baseline	Optimization	Possible improvement
SiPM	Hamamatsu H13361-3050HS	75 μm cell FBK sensor	Larger PDE Better time resolution
Aerogel radiator	Aerogel Factory n=1.02	Refractive index Tile dimensions Tsinghua aerogel	Increase photon yield Reduce edge effects Risk reduction for single vendor
Gas radiator	SIAD C ₂ F ₆	Gas mixture Early procurement	Reduced environment impact (global warming) Limit dependence on market & regulations
Mechanics	Tecnavan Carbon fiber composite	Al composite	Cost reduction
Mirrors	CMA Carbon fiber composite	Mold material Different core strucuture Tessellation	Better shape quality vs cost
Cooling	Al plate	Carbon foam plate	Reduce material budget

Environment, Safety & Health

1 year typical C₂F₆ losses would correspond to 1 intercontinental flight CO₂ emission requires to minimize losses in the recirculating system

About 2-2.5 kW per detector box requires liquid cooling, air circulation + interlock

On-site annealing requires single-sensor temperature (optical) control

Low-T coolant circuit (down to -50 C) requires proper circuit and insulation

Thin transparent septa require delta-pressure control and safety diaphragm

Quality Assurance

Aerogel: Refractive index, dimensions, defects, transmittance

organized within RICH Consortium (INFN-FE, INFN-BA, CERN, Temple)

https://docs.google.com/document/d/1YpN7gx85JjoQnoB9NblD61N9B1YhRGwBh2GIKZ2ST-0/edit

Mirror: Dimensions, shape accuracy, radius, reflectivity

JLab existing test laboratory with INFN-equipment, DUKE laboratory

Sensors: Electrical connections, quench resistor, I-V characteristics, DCR, relative PDE

Test stations in Italy (INFN-BO, INFN-FE, INFN-CS)

Front-end: Electrical connections, time jitter, ToT characteristics

Test stations in Italy (INFN-BO, INFN-TO)

Gas: Performance with prototype, transparency, contaminants

CERN

Calibration and Commissioning

Detector response:

LED/laser system (sensor response and mirror alignment)

Dark count rate monitor

Single-photon time over threshold

Time calibration:

Absolute time with respect bunch crossing and Forward TOF

Time intercalibration: photons hits from the same event

Particle identification:

Control particle samples (identified by other systems)

Known meson decays (K_s, Λ, Φ)

Executive Summary

Dual-radiator RICH is a cost-effective and compact solution for the forward PID at EPIC

Baseline configuration and technology has been identified to reach the EIC requirements

3σ angular separation for forward hadrons up to 50 GeV/c momentum and up to 3.5 in pseudo-rapidity

dRICH Collaboration is setting up and an Executive Office has been enganged

R&D is on track to deliver the anticipated milestones towards TDR

Working on consolidating the baseline design with further optimization of the components

Need to integrate and validate all the progresses with a real-scale prototype prior of TDR

Aerogel and SiPM might need longer engineering (contingency) to reach the best performance