Call for FY24 R&D Proposals on May 8, 2023

Dear current and future R&D participants,

It is time to discuss the next steps in our path, i.e., the FY24 projects. We are trying to get the R&D program fully in sync with the FY boundaries. Proposals

- 1. Please submit your proposals and progress reports (where applicable) to us by July 7, 2023. We aspire to have a DAC meeting well in time to prepare for contracts at the beginning of FY24.
- 2. We expect progress report from all ongoing projects eRD101 to eRD113. What milestones were achieved. How did our understanding improve. What is left to do?
- 3. eRD102, eRD103, eRD104, eRD106, eRD107, eRD108, eRD109, eRD110, eRD111, eRD112, and eRD113 may submit continuation proposals if and only if technical risk milestones remain.

These new proposals should be relatively straightforward to write. Keep them short and concise. List whatever technical risks remain, the milestones, deliverables, and two money matrices showing cost/item and funding/institution to close those remaining risks. Also list the representatives for each institution. List all participating members and institutions on the front page. Please also give, if applicable, an outlook for the years past FY24.

Be aware that R&D should not be mixed with PED. If you are not sure, talk to us. The proposals should concentrate on detector R&D tasks that mitigate project detector technical, risk.

DAC Review Meeting

With the project detector R&D expected to dwindle down at CD-2, we will limit the meeting to a two-day review meeting in the July-August period. The FY24 proposal goals of all continuation projects should be presented as well as a short status report of all FY22/FY23 proposals. More details on this meeting will be announced soon.

Best regards, Elke, Rolf, and Thomas

Upcoming Reviews

- Preliminary Design Status Review ePIC PID detectors
- DAC Meeting(s): R&D (2 days) and technical design review (2 days)
- Final Design Review for LLPs of Detector
- CD-3A Director's Review
- DOE CD 3A OPA Review
- DOE CD 3A ESAAB Approval
- Final Design Reviews for all ePIC subsystems
- DOE CD 2/3 OPA Review and ICR
- DOE CD 2/3 ESAAB Approval

July 5-6, 2023 Late Summer/Fall 2023 (TBD) September 2023 October 10-12, 2023 November 2023 January 2024 April – October 2024 January 2025 (TBC) **April 2025**

AC-LGAD R&D FY23 Deliverables

- Sensor:
 - prototype with 30 ps time and spatial resolution match RPs and Tracker;
 - prototype with 20 ps time resolution for Forward ToF;
 - prototype with 20 ps time resolution for Barrel ToF.
- ASIC: EICROC FCFD SCIPP

1st sensor + ASIC demonstrator for EIC applications and testing with particle beam; 2nd ASIC prototype submissions with better performance and extended features

- Design and prototype of flexes
- Design and prototype of light-weight structure with embedded cooling tubes.

eRD112	eRD109	Project Engineering Design
 Sensor R&D TCAD simulation BNL, HPK productions Lab/beam/irradiation Sensor/ASIC integration Interposer Module structure Light-weight structure 	 Frontend ASICs EICROC FCFD SCIPP (FAST, ASROC, HP-SoC) Frontend electronics Low-mass flexible PCB 	 Mechanical engineering Mech. support, integration Cooling system Electric engineering Clock distribution system Streaming readout Service hybrid
7/3/23	Zhenvu Ye @ UIC	

AC-LGAD R&D FY24 Goals

- Sensor
 - Optimize strip sensor design for better timing resolution (BNL/HPK)
 - Explore larger pixel size for FTOF for reduced number of channels (BNL/HPK)
 - Double metal layer strip sensor (BNL)
 - Determine the appropriate sensor size for detector module assembly (HPK)
 - Characterization (LANL, SCIPP, UIC/FNAL)
- ASIC
 - Testing of EICEICROC0, submission of EICROC0_1 (OMEGA/IJCLab/CEA-Irfu)
 - Submission and testing of FCFDv1, submission of FCFDv2 (FNAL)
 - Characterization of 1st ASROC, HPROCv2 and FAST3 (SCIPP)
- Sensor-ASIC integration
 - Interposer to connect pixelated ASIC with strip sensors or pixel sensor with different pitches (UIC)
- Flex
 - Produce module size functional prototype for bias sensor and reading out ASICs (ORNL)
- Mechanical structure
 - FTOF structure design and prototype (Purdue/NCKU)
- Electronics
 - Readout board and power board (BNL/Rice)

BNL – eRD112

- FY23 (Labor 20k, MS 75k)
 - 08/2022-12/2022: 3rd production with pixels and strips 20-50 um thick
 - 02/2023-09/2023: 4th production with deep gain layer to increase signal amplitude
 - 05/2023-07/2023?: 5th production with normal gain layer design for pixels with different pitches
- FY24 (Labor 20k, MS 75k)
 - Production: fabrication of strip sensors with optimized geometry for timing; optimize geometry and process parameters to reduce the number of channels; fabrication of pixel sensors with optimized geometry for timing and crosstalk, compatible with the read-out ASICs being developed;
 - Production: introduce second metal for re-routing of signals.

LANL – eRD112

- FY24 (20k)
 - travel to Fermi lab for the beam tests and basic M&S purchase for the sensor beam tests.)
 - Plan to characterize the irradiated AC-LGAD samples with the wired bounded 16-CH carrier boards.
 - Participate in future AC-LGAD beam tests at Fermilab.
 - If needed, will prepare and perform the irradiation tests at LANL LANSCE facility.
 - PED request (20k+10k): request funding to support part of Eric's time to work on the AC-LGAD ToF mechanical design: Plan to contribute to the AC-LGAD ToF mechanical design and focus on the cooling system design

NCKU – eRD112

- FY23 (Labor 5k, MS 10k)
 - ?
- FY24 (?)

Purdue – eRD112

- FY23 (Labor 15k, MS 5k)
 - 6/2023: first prototype and FEA of BTOF module CF structure, thermal test will follow
 - More advanced prototypes for BTOF?
- FY24 (Labor 30k, MS 5k)
 - Summer 2024: prototype FTOF no-pipe structure with reduced material budget (~2.5% X0)

SCIPP – eRD112

- FY23 (Labor 15k, MS 0k):
 - Laser: Charge sharing: how it helps eRD112? non-uniformity: which BNL batch?
 - Capacitance: AC and interstrip: how it helps eRD112?
 - TCAD simulation: same content in FY22 report
- FY24 (Labor 31k, MS 4k):
 - Results within three months of delivery: Characterization of BNL prototypes, especially response uniformity
 - 12/2023: TCAD-based optimization of sensor characteristics, especially 20 µm bulk: how it helps eRD112?
 - Different gain layer design, 3D simulation of pad sensors with different pitch/metal
 - 2/2024: Characterization of EPIC run of HPK LGAD sensors
 - CV, IV, and laser and source
 - 3/2024: Execution and evaluation of radiation damage study
 - Before/after irradiation, NIEL using LANL on n+ layer, TID (dose from simulation)
 - <u>https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses</u>
- Optional FBK Production in FY24 (Labor 15k, FBK production 70-100k for 5-15 wafers)
 - 3/2024: Design studies for and initiation of an AC-LGAD fabrication run at FBK

UIC/FNAL – eRD112

- FY23 (Labor 15k, MS 10k)
 - 1/2023: laser and test beam results of 2nd BNL production sensors
 - 4/2023: laser and test beam results of 3^{rd} BNL production sensors
 - 2/2023: 1st HPK production sensors from FY22 funds
 - 6/2023: laser and test beam results of 1st HPK production sensors
- FY24 (Labor 15k, MS 10k)
 - Q1 FY24: 2nd HPK production sensors (wider pitch, wider metal, 20/30/50um thickness) from FY23 funds
 - Q2 FY24: test results of 2nd HPK production sensors
 - Q3 FY24: test results of FCFDv2+2nd HPK sensors
 - Q4 FY24: 3rd HPK production sensors (module size sensor, "final" geometry) from FY24 funds
- Optional Interposer in FY24 (Labor 15k, MS 25k)
 - Q3 FY24: interposers to connect EICROC and strip sensors
 - Q4 FY24: characterization of EICROC+interposer+strip sensors

IJCLab/Omega/CEA – eRD109

- FY23 (MS 75k)
 - EICROC0 testing
 - 1st quarter of 2024: EICROC0_v1 submission
- FY24 (MS 90k?)
 - 1st quarter of 2025?: EICROC1 submission

Fermilab – eRD109

- FY23 (MS 40k)
 - 6/2023: charge injection, laser and test beam results of FCFDv0
 - 8/2023: FCFDv1 submission
- FY24 (MS 40k?)
 - Q1: Development of specifications for the FCFDv2.
 - Q2-Q3: Detailed characterization of the FCFDv1 performance
 - Q2-Q4: Design of the mixed-signal multi-channel FCFDv2 ASIC
 - Q4: Submission of the multi-channel FCFDv2

ORNL – eRD109

- FY23 (Labor 32k, MS 12k)
 - Obtained several prototype flex foils with satisfactory high voltage capabilities and ohmic resistance but minor discrepancies in line impedance. Work will now focus on comprehensive characterization and integration into existing test benches to evaluate performance under various conditions
- FY24 (Labor 10k, MS 20k)
 - a functional full-size demonstrator of the flex PCB that connects at least one readout ASIC and sensor assembly on one end to a RDO prototype to be developed by BNL and Rice.
 - Interposer in the text?

SCIPP – eRD109

- FY23 (Labor 29.7k, MS 3.3k):
 - ASROC:
 - designed a characterization board, waiting for chip
 - HPSOC:
 - ?
 - FAST2:
 - developed readout board, confirm large dynamic range and 1.5 ns risetime
- FY24 (Labor 38k, MS 7k):
 - ASROC:
 - 1/2024: characterization of first prototype
 - HPSOC: what is the power consumption?
 - 3/2024: characterization of the second, EIC-optimized prototype ASIC (HPSOCv.2)
 - 5/2024: specification of next version
 - FAST3: 1.5ns risetime, 2.4+5 mW/ch, suitable for EIC?
 - 3/2024: Characterization of the FAST3 analog amplifier with calibration and sensor inputs

BNL/Rice – eRD109

- See slides in the following talk
- Put the detailed plan and request in the overleaf

Institution	Contact	R&D Interest
Brookhaven National Laboratory	Alessandro/Zhangbu	Sensor prototyping, ASIC testing, Electronics development
Fermi National Accelerator Laboratory	Artur Apresyan	Sensor testing, ASIC prototyping
Los Alamos National Laboratory	Xuan Li	Sensor testing
Rice University	Wei Li	Sensor testing, Electronics development
Oak Ridge National Laboratory	Oskar Hartbrich	Sensor testing, ASIC testing, Electronics development
Ohio State University	Daniel Brandenburg	Electronics testing
Purdue University	Andreas Jung	Mechanical structure and cooling system prototyping
University of California, Santa Cruz	Matthew Gignac	Sensor testing, ASIC testing
University of Illinois at Chicago	Zhenyu Ye	Sensor testing, sensor-ASIC integration, ASIC testing
Hiroshima University	Kenta Shigaki	Sensor prototyping and testing
RIKEN	Yuji Goto	
Shinshu University	Kentaro Kawaide	
University of Tokyo	Taku Gunji	Streaming Readout
South China Normal University	Shuai Yang	
Univ of Science and Technology of China	Yanwen Liu	Sensor prototyping, Electronics development
Indian Institute of Technology, Mandi	Prabhakar Palni	Sensor testing
National Inst. of Sci. Education Research	Ganesh Tambave	Sensor prototyping and testing
National Cheng-Kung University	Yi Yang	Mechanical structure prototyping
National Taiwan University	Rong-Shyang Lu	Sensor prototyping, ASIC testing, Electronics testing

FY23 Report and FY24 Proposal Writing

As discussed last week, I suggest that we follow the same procedure as last year, namely to use overleaf to collect all the inputs, and consolidate into a single document for our FY23 report and FY24 proposal. I have created an overleaf project. Below is the link for viewing

https://www.overleaf.com/project/646c69b5b97ef76a1d135ed5

If you would like to contribute to writing (e.g. what your group did in FY23, what you would propose to do in FY24 etc), please let me know your overleaf account. Please complete the editing before June 20.

P.S. our proposals from the last two years can be found at

https://wiki.bnl.gov/conferences/index.php?title=Proposals

Vendor/	M&S	Cost per	N.	Tot. Cost	
Institute	Item	Item (k\$)	Items	(k\$)	
Sensor Pro	duction			175	
BNL IO	Sensor fabrication (incl. labor)	50 (10 wafers)	1.5	75-	→ 75
HPK/FBK	Sensor fabrication	75+3-5/wafer	1	100-	→ 80
Sensor Cha	aracterization			13.7	
UIC	M&S for test beam setup	-	-	5	→ 5
LANL	M&S for irradiation test	-	-	5	
SCIPP	Fermilab 16-channel boards	-	-	3.7	
Sensor/AS	IC Integration	I	1	30	
UIC	Interposer fabrication and bump bonding	30	1	30	
Mechanica	Structure		1	15	
NCKU	Material for light-weight support structure	-	-	10-	→ 10
Purdue	Material for light-weight support structure	-	-	5-	→ 5
Travel				21	
BNL	Trips to Fermilab testbeam	2	2	4	
UIC	Trips to Fermilab testbeam	1	5	5-	→ 5
ORNL	Trips to Fermilab testbeam	3	2	6	
Rice	Trips to Fermilab testbeam	3	2	6	
TOT.				254.7 -	180

Table 8: eRD112 resource request for M&S costs in FY23, excluding frontend ASIC and electronics.

Inst.	Task	Labor	FTE	Tot. Cost	
		\mathbf{Type}	(%)	(k\$)	
Sensor	R&D		•	172.3	
BNL	Sensor+ASIC and test board assembly	El. Tech.	10	20 -	→ 20
UIC	Sensor+ASIC and test board assembly	El. Tech.	10	15 -	→ 15
	-lab/beam test for sensors and ASICs	Research Sp.	50	45	-
LANL	Sensor irradiation test	Scientist	2.5	10	_
	Sensor irradiation test	Student	5	5	_
Rice	pixel sensor test	Postdoe	40	40	_
SCIPP	Oversight and coordination	Project Scientist	5	9	_
	TCAD sim. and sensor design	El. Design Specialist	10	16.5 -	→ 5
	Prototype Assembly	EM Engineer	5	11.8-	→ 10
Sensor/	ASIC Integration			15	
UIC	interposer design and testing	El. Engineer	10	15	_
Mechan	ical Structure	I	1	20	
NCKU	light-weight support structure R&D	Mech. Engineer	10	5 -	→ 5
Purdue	light-weight support structure R&D	Mech. Engineer	10	15 -	→ 15
TOT.				207.3 -	→ 70

Table 9: eRD112 budget request for labor costs in FY23, excluding frontend ASIC and electronics.

Vendor/	M&S	Cost per	N.	Tot. Cost
Institute	Item	Item (k\$)	Items	(k\$)
Frontend	ASIC			118.3
IJCLAB	EICROC1 submission	65	1	65
	EICROC test boards	-	-	10
FNAL	FCFDv1 submission	25	1	25
	FCFD test boards	-	-	15
SCIPP	ASIC service boards	-	-	3.3
Frontend	Readout Electronics		•	31
BNL	Xilinx Dev Kit	4	1	4
	Timing cillps and boards	15	-	15
ORNL	Xilinx Dev Kit	4	1	4
	M&S	8	-	8
TOT.	-	-	-	149.3

Table 10: eRD109 budget request for M&S costs in FY23 on frontend ASIC and electronics.

Inst.	Task	Labor	FTE	Tot. Cost	
		Type	(%)	(k\$)	
Fronter	nd ASIC		1	29.7	
SCIPP	Service board design layout	Electronic Design Specialist	7.5	12.4	
	Board Assembly	Electro-Mechanical Engineer	5	11.8	
	Board loading and lab msmt	Assistant specialist	5	5.5	
Fronter	nd Readout Electronics		•	88	
BNL	Readout and Timing Distribution	Research Associate	20	3 8	•
ORNL	Barrel TOF Low-Mass Service Hybrid	Electric Engineer	10	32	
Rice	Endcap TOF Service Hybrid	Electric Engineer	15	18	
TOT.	-	-	-	117.7	

Table 11: eRD109 budget request for labor costs in FY23 on frontend ASIC and electronics.