

Particle Flow Survey: Thoughts & Discussion

ePIC Jet/HF Working Group July 13th, 2023 Derek Anderson

Particle Flow Squad | Introduction

- Physics Analysis and C/S Coordinators identified <u>4</u>
 <u>priorities</u> for reconstruction software:
 - Vertexing and PID
 - Low Q2 Tagger
 - Electron Finder
 - Particle Flow
- ∴ Formed 4 squads inside reconstruction working group to address topics
 - PF Squad Charge: improve jet reconstruction using particle flow information

- $\,\circ\,\,$ 2 distinct regions for PF at ePIC
 - Barrel/Backward: JER set by tracker + EMCal
 Reed tracks to deconvolve clusters for neutrals
 - Forward: JER can be improved by combining track + calorimeter information
 - ∽ Need to separate overlapping clusters

$\circ~$ 2 initial tasks:

- Survey existing implementations
- Explore necessity of custom approach in barrel/backwards

Particle Flow Survey | General

- **Particle flow:** use appropriate detectors to measure appropriate particles
 - Avoid double-counting energy
 - a.k.a "Energy Flow"

$\circ~$ At its most basic:

- 1) Match tracks to calorimeter clusters
- 2) Subtract track energy from calorimeter energy
- ⇒ (Almost) all algorithms build on this in some way

- Some examples
 - <u>CELLO (PETRA)</u>
 - <u>ALEPH (LEP)</u>
 - DELPHI (LEP)
 - <u>H1 (HERA)</u>
 - <u>D0 (Tevatron)</u>
 - <u>CDF (Tevatron</u>)
 - Pandora (ILC/CLIC, MicroBooNE)
 - ATLAS (LHC
 - <u>CMS (LHC)</u>
 - sPHENIX (RHIC)

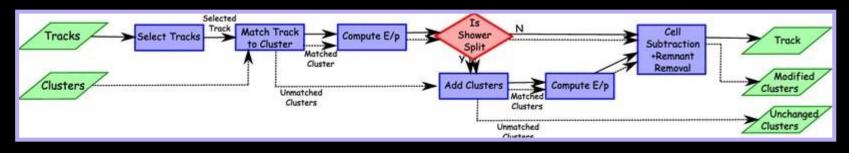
Particle Flow Survey | ALEPH & DELPHI

• ALEPH and DELPHI implemented the first

"modern" PF algorithms

∽ Both make use of PID capabilities

ALEPH:


- Associate tracks to clusters and iteratively clean track+cluster objects
- Algorithm:
 - 1) Project tracks & associate them to clusters
 - 2) Identify e^{\pm} & remove them
 - 3) Identity π^0 / γ & remove them
 - 4) Identify μ^{\pm} & remove them
 - 5) Do track-cluster subtraction
 - 6) Any remaining calorimeter energies are flagged as h^0

DELPHI:

- Very similar, but slightly different order of operations
- Algorithm:
 - 1) Identify e^{\pm}/γ & remove them
 - 2) Extrapolate tracks through HPC (EMCal) + HCal
 - Any clusters "close" to extrapolated tracks are associated with track and removed
 - 4) Any remaining clusters are flagged as h^0

Particle Flow Survey | ATLAS

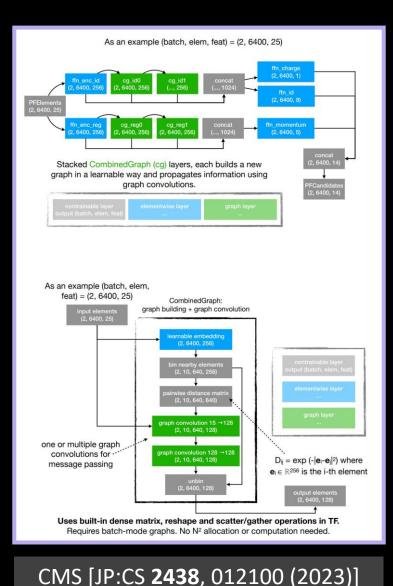
ATLAS [arXiv:1703.10485]

 ATLAS makes use of a sophisticated variation on the "cluster – track" idea
 The very similar (but still distinct) to what's being utilized at sPHENIX

ATLAS:

- Algorithm:
 - 1) Match tracks to clusters
 - 2) Determine if cluster is split
 - a) If yes, then add more clusters to track+cluster object
 - b) Otherwise move on
 - 3) Subtract expected track energy cell-by-cell from clusters
 - 4) Return:
 - Tracks
 - Matched clusters w/ nonzero energy after subtraction
 - Unmatched clusters

Particle Flow Survey | PandoraPFA


- ILC/CLIC (esp. CALICE) efforts have focused on PF
 - Produced many algorithms, e.g.
 - > <u>Arbor</u>
 - PandoraPFA
- **PandoraPFA:** a *very* sophisticated PF algorithm for high granularity calorimeters
 - Part of AIDAsoft
 - Has produced an extensive <u>detector</u>-<u>agnostic implementation</u>
 - Currently deployed at <u>MicroBooNE</u>

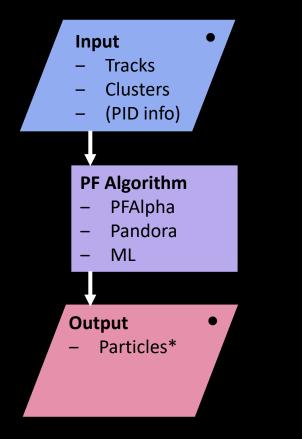
Algorithm: 8 stages in total

- 1) Select tracks for analysis
- 2) Select calorimeter cells & cluster based on geometry
- Recluster cells into cones around track+EMCal projections:
 - i. 1^{st} identify and remove possible γ clusters
 - ii. Then cluster remaining cells
- 4) Recluster non- γ clusters based on topology
- 5) Attempt to split overlapping clusters
- 6) Apply more sophisticated γ -ID algorithm to separate γ from h^0
- 7) Neutral fragments from h^{\pm} are identified and removed
- 8) Return: "PF Objects"
 - Matched track+cluster objects with rudimentary PID applied

Particle Flow Survey | MLPF at CMS

 An ML alternative to existing algorithm is being explored at CMS

- Ref.s:
 - > EPJC **81**, 381 (2021)
 - > JP:CS 2438, 012100 (2023)
- Could ease computational requirements


Implementation:

- 1) Extensive track and calorimeter information is fed to a GNN model
- 2) GNN converts track/calorimeter hits/cells into connected graphs
- 3) Graphs are then regressed to particles

Particle Flow Discussion | Algorithm Strawman

General Reconstruction Flow:

* = ReconstructedParticle object

 \bullet = fixed

- Infrastructure to do "bare-bones" PF *largely* exists
 - ⇒ Could implement a basic "alpha" (PFAlpha) algorithm

• Rationale:

- Motivate and test development of necessary software
- Serve as baseline to compare refinements against
- Allow analyzers to quickly start working w/ output
- Development then proceeds with testing more refined approaches, e.g.
 - Such as PandoraPFA
 - ML-based models
 - Etc.

Particle Flow Discussion | Algorithm Strawman

PFAlpha:

- 1) Project tracks through calos
- Associate all calo clusters within a cone of size R around the track
- Sum all calo energy in cone and subtract expected track energy from sum

4) Return

- Tracks
- Subtracted clusters
- Unassociated clusters

- Infrastructure to do "bare-bones" PF *largely* exists
 - ⇒ Could implement a basic "alpha" (PFAlpha) algorithm

• **Rationale**:

- Motivate and test development of necessary software
- Serve as baseline to compare refinements against
- Allow analyzers to quickly start working w/ output
- Development then proceeds with testing more refined approaches, e.g.
 - Such as PandoraPFA
 - ML-based models
 - Etc.

Particle Flow Discussion | To-Do

Missing Infrastructure (Major):

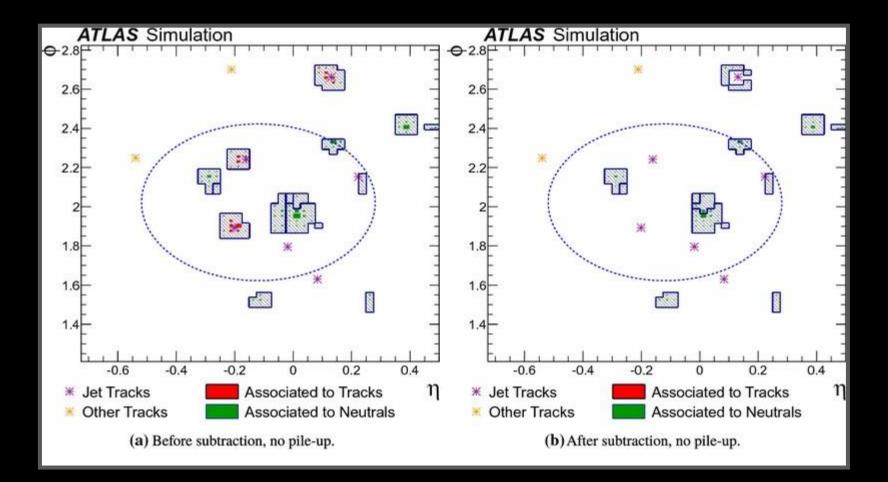
- PF Framework
 - > Factories
 - > Algorithm + configuration files
- Improved track-cluster associator
 - > Extend to include Hcals
 - However, truth-based implementation may work for interim

Missing Infrastructure (Minor):

- PFObject Visualizer:
 - Plugin (or service?) to
 visualize clusters, tracks, etc.
 - > Crucial for debugging
- Downstream analysis:
 - Code to look at impact of changes
 - Existing jet benchmarks are good starting place

Open Questions:

- Does implemented cluster splitting work in non-enabled* detectors?
- How well do existing MC-cluster associations work?
 - Currently handled by
 MatchClusters algorithm
 - > Would a separate MC-cluster associator be better?


Major = necessary for implementation Minor = can be pursued in parallel with implementation Yellow = connection with other groups

* = existing implementation enabled for central ECals and ECalLumiSpec (not enabled for Imaging/SciFi)

Thank you!

Backup | Example PFObject Visualizer

ATLAS [arXiv:1703.10485]