#### Particle flow in CMS

Matthew Nguyen ePIC Jets & HF meeting July 13<sup>th</sup>, 2023

### My CMS PFA credentials

- CMS member since LHC start-up in 2009
- During ramp-up period (2009 2011), I worked on commissioning of the CMS particle flow (PF) algorithm
- I adapted the CMS PF algo for heavy ion collisions
- I currently serve as reconstruction co-convener of CMS (2022 – 2024)

All material drawn from

- CMS PF <u>JINST</u>
- Talks from P. Janot & C. Bernet [1,2]

Code lives here: <u>https://github.com/cms-sw/cmssw/tree/master/RecoParticleFlow</u>

# What is particle flow and why do it?

- Reconstruction based on physics objects (vs. detector)
- First developed for e<sup>+</sup>e<sup>-</sup> collisions w/ ALEPH detector
- For CMS: charged hadron, neutral hadron, photon, e, μ



- PF = optimized combination of information from sub-detectors
- Simplifies analysis, at cost of more complex reconstruction 3

# Detectors for particle flow

#### The ideal PF detector

- Tracker
  - High granularity & B field
  - High efficiency / low fake
- Calorimeters
  - Segmentation above all else
  - Long. segmentation a plus
  - Energy resolution secondary
- Material:
  - As little inactive as possible

#### CMS: NOT made for PF

#### Tracker

- ✓ Pixel + strips,  $\sigma_p/p \approx 1\%$
- x Eff. limited by material
- Calorimeters
  - ✓ ECAL: Excellent spatial and energy resolution
  - x HCAL: Modest spatial and energy resolution
- Material:
  - ✓ Calorimeters inside magnet
  - x Too much material in tracker

pp collision environment more challenging than e<sup>+</sup>e<sup>-</sup>, particularly at high PU (not to mention heavy ions)

# Separating particles



CMS magnetic field

- B = 3.8 T
- ECAL surface at 1.29 m
- B\*r = 4.9 T\*m

For comparison

- ALEPH: 1.5\*1.8 = 2.7 T\*m
- ATLAS: 2.0\*1.2 = 2.4 T\*m
- CDF: 1.5\*1.5 = 2.3 T\*m
- D0: 2.0\*0.8 = 1.6 T\*m

Limited segmentation can be compensated by strong B field NB: For calo jets, low  $p_T$  charged hadrons are pushed out of cone

# PF recipe

- 1) Local reco: (super) clustering, track finding, lepton ID\*,
- 2) Link between elements from different detector subsystems to form blocks
- 3) Resolve blocks into particles w/ appropriate calibrations (calibrations discussed before linking)
- 4) Post-processing (cleaning)

Illustrative example jet

50 GeV jet containing:

- 2 charged hadrons: π<sup>+</sup>, π
- 2 photons from a  $\pi^0$  decay
- 1 neutral hadron: K<sup>0</sup><sub>L</sub>



#### Local reco: tracking

"Iterative tracking" for higher efficiency, improved CPU timing

Description of tracking in CMS JINST 9 (2014) 10, P10009



- Performance degradation at large  $p_T$  due to track merging / hit confusion
- Much improved now after years of development (cluster splitting, DNN, etc.)
- Large E charged hadrons are anyway well-measured in calorimeters

#### CMS tracker

Required to be fast and rad-hard

 $\rightarrow$  large material budget

- At worst (|η| ≈ 1.5)
  - 85% γ conversion / e brem
  - 20% h<sup>+/-</sup> have nuclear interaction before ECAL
- Secondaries are a major complication of CMS PFA





#### Local reco: clustering

Dedicated PF clustering algorithm is designed to be outlier resistant

- Seeds: cells above a given threshold & higher than neighboring cells
- Topo clusters: seed + cells sharing a side (ECAL & HCAL) or a corner (ECAL only)
- Final clusters: obtained with Gaussian mixing model for energy sharing

|                                  | ECAL   |         | HCAL   |         |
|----------------------------------|--------|---------|--------|---------|
|                                  | barrel | endcaps | barrel | endcaps |
| Cell <i>E</i> threshold (MeV)    | 80     | 300     | 800    | 800     |
| Seed # closest cells             | 8      | 8       | 4      | 4       |
| Seed E threshold (MeV)           | 230    | 600     | 800    | 1100    |
| Seed $E_{\rm T}$ threshold (MeV) | 0      | 150     | 0      | 0       |
| Gaussian width (cm)              | 1.5    | 1.5     | 10.0   | 10.0    |

\* Omitting pre-shower from this presentation for simplicity



HCAL view



Same example event, but in the  $\eta$ - $\phi$  plane of each calorimeter

# Cluster calibrations for photons (ECAL)

- Thresholds in ECAL clustering require energy scale correction
- Derived from (un-converted) photon gun GEANT simulation vs E and  $\eta$
- Correction factor can be as large as 20% at low E



- Resulting  $\pi^0$  peak in data within 1% of PDG for all E &  $\eta$  validating simulation
- Note that  $\pi^0$  are mostly merged in jets, but not relevant for PF

# Cluster calibrations for hadrons

- Initial HCAL calibrations derived from test beam w/ 50 GeV pions w/o ECAL interaction
- But HCAL response to charged hadrons:
  - depends on energy deposited in ECAL ( $\approx 1\lambda$ )
  - Is non-linear
- Response derived from K<sup>0</sup><sub>L</sub> gun MC, then corrected w/ isolated hadron data

 $E_{\text{calib}} = a + b(E)f(\eta)E_{\text{ECAL}} + c(E)g(\eta)E_{\text{HCAL}}$ 

- *b* & *c* determined by iterative  $\chi^2$  minimization
- a represents energy lost to thresholds
  - obtained by minimizing dependence of b & con E, for E > 10 GeV
  - a = 3.5 (2.5) GeV for hadrons showering in ECAL & HCAL (HCAL only)

Calibration procedure applied directly to isolated hadrons, for non-isolated hadrons, first have to discuss *linking* algo



# Linking

- Elements are linked into blocks
  - Purity driven by granularity & particle density
  - Efficiency driven by material (kinks, secondaries)
- Track-calo matching:
  - Track extrapolated from outermost hit to e shower max (one interaction length) for ECAL (HCAL)
  - Extrapolation must intersect cluster boundary + an envelope that accounts for cracks, uncertainty in shower max position, and for multiple scattering
- Calo-calo matching:
  - Match if ECAL cluster lies with in HCAL cluster
  - If ECAL matches multiple HCAL, choose closest
- Linking time quadratic w/ multiplicity
  → pairs of elements restricted to nearest neighbors using a k-dimensional tree



This event gives 2 blocks



### "Photon precedence"



- K<sup>0</sup><sub>L</sub> deposits all its energy in ECAL
  → labeled a photon
- Choice justified by jet composition
  - 25% of jet energy in photons
  - 3% of jet energy from neutral hadrons in ECAL
- Calibration based on EM hypothesis
  → Response for these h<sup>0</sup> ≈ 30% low,
  w/ JES ≈ 0.5% low (left for JECs)

# Link disambiguation

Keep only closest link if ...

- A track matches multiple HCAL clusters
- ECAL cluster matches multiple HCAL clusters
- An ECAL cluster matches multiple tracks



# **Resolving blocks**



For each HCAL cluster compare sum track p vs calo E\*

- If p and E compatible:
- Create h<sup>+/-</sup> (1 per track)
- if E >> p + 120%\*√p:
- Create h<sup>+/-</sup> + neutrals
- If E << p: something is fishy
- Re-check for muons or fake tracks. If not, create h<sup>+/-</sup>

\* Reference E based on hadron hypothesis

$$E = a + bE_{ECAL} + cE_{HCAL}$$

### Energy/momentum assignment



 $E = a + bE_{ECAL} + cE_{HCAL}$ 

- If p & E compatible, h<sup>+-</sup> from:
- > fit to  $p_i \& E$  according to  $\sigma_{p,E}$ 
  - $\rightarrow$  p<sub>i</sub> for small p<sub>T,i</sub>,
  - $\rightarrow$  calo measurement at large E
- If E significantly larger than p:
- >  $h^{+/-}$  with  $p_i + 1$  or more neutrals:
  - If E from HCAL or ECAL only:
  - > HCAL →  $h^0$  with E p
  - ≻ ECAL →  $\gamma$  with E p/b
  - If *E* from both HCAL & ECAL:
  - > If E-p > E<sub>ECAL</sub>:  $\gamma$  w/ E<sub>ECAL</sub> + h<sup>0</sup> w/ rest
  - > If E-p < E<sub>ECAL</sub>:  $\gamma$  with (E p)/b

("photon precedence")

Wrapping up our event of interest:

#### 2 charged hadrons, 3 photons



# Post-processing: muon cleaning

- Have ignored leptons so far in this presentation
  - Muon ID is done before other particles: High quality tracks with matching high quality muon road are removed from blocks
  - e ID is another story, but specific to CMS (thick tracker, brem collection)
- Post-processing: Revisit particle assignment using high-level quantities



4000

2000

0

0

25

50

75

100

125

Total Energy (GeV)

150

CMS: Scan large missing  $E_T$  (MET) events  $\rightarrow$  Post-processing largely concerns muons

Several sources of large MET identified:

- 1) Cosmics  $\rightarrow$  large impact parameter muons
- Mis-reco → Poor agreement between momentum in tracker and muon system
- 3) Punch-through  $\rightarrow$  High E muon w/ fake h<sup>0</sup>
- 4) Missed muons  $\rightarrow$  Fake h<sup>+-</sup> "eats" nearby h<sup>0</sup>

#### If it decreases MET, action taken:

- 1) Remove muon
- 2) Choose different muon momentum estimate
- 3) Change muon to charged hadron
- 4) Change charged hadron to muon +  $h^0$

How well does it work?

#### Particle resolution



#### Jet angular resolution



- Mitigates effect of coarse HCAL segmentation
- Recovers h+/- that are bent by B field

#### Jet energy resolution



- Raw response is already close to unity, reducing size of jet energy correction
- Jet energy resolution improved, especially at low p<sub>T</sub> where tracker dominates

#### Jet flavor sensitivity



- Flavor dependence is one of the leading contributors to JES uncertainty
- Reduced by ≈ 2x at low-to-mid p<sub>T</sub>

#### Particle composition



- Important to test accuracy of simulation by checking particle composition
- Within 1% until very large jet p<sub>T</sub>
- NB: Baseline JECs derived from MC, but residual data/MC scale factors obtained from dijet & boson+jet balancing (described <u>here</u>)

# Pile-up mitigation



- Charged hadron subtraction (CHS): h<sup>+/-</sup> from pile-up removed
- More advanced method uses proximity to h<sup>+/-</sup> to also mitigate effector of PU on neutrals ("<u>PUPPI</u>")

#### Advanced topics



ML-based PF



Clustering (<u>CLUE</u>) and linking (<u>TICL</u>) for High Granularity Calorimeter, 26 written for heterogenous architectures

### **Conclusions & Outlook**

- Particle flow reconstruction provides the default event interpretation of CMS
  - A first for hadronic collisions
  - Despite a detector not designed for PF with several shortcomings (thick tracker, modest HCAL segmentation, etc.)
- Particle flow improved performance
  - Of physics objects: jets, MET, tau, etc.
  - And mitigating effects of pile-up
- Expect better performance w/ detector designed for PF, e.g., Phase-2 CMS w/ HGCAL
- Elements from the CMS PFA may be useful ePIC