

AC-LGAD Readout Systems: Status and Perspectives

> AC-LGAD ASIC: EICROC (Dominique Marchand, IJClab, France)

1st intention: dedicated to Far Forward detectors, the Roman Pots (pixelated 0.5 x 0.5 mm² AC-LGAD) Also:

- Forward TOF (pixelated 0.5 x 0.5 mm² AC-LGAD)
- Central Tracking & Timing Layer (Barrel TOF): AC-LGAD strips
- pfRICH
- hpDIRC
- > DAQ systems (Tonko Ljubicic, BNL)

DOE/eRD109

The EICROC Project

Objective: Development and characterization of an ASIC EICROC (32 x 32)

able to read-out the new generation of pixelated (500 x 500 μm^2) silicon sensors: AC-LGAD

(Low-Gain Avalanche Diode) coupled AC

for the Electron Ion Collider (EIC)

1st intention: optimized for Far Forward detectors: the **Roman Pots**

RC2

RC3

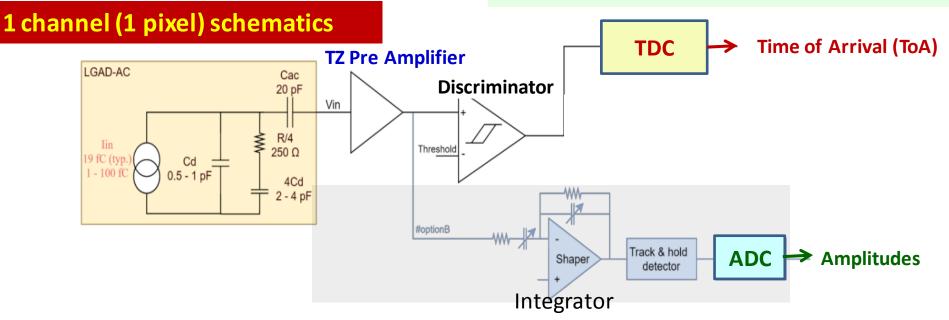
Stepping up through succesive ASIC iterations to control performances fulfilling ePIC detector requirements

> EICROCO prototype (16 channels; 4 x 4): under test since March '23

EICROCO requirements and design: 16 channels (4x4)

Requirements:

- pixel size **0.5** x **0.5** mm² (HGTD 1.3x1.3 mm²)
- low power consumption < 2 mW/channel</p>
- -low jitter ~ 20 ps
- low noise ~ 1 mV/channel
- sensitivity to low charge (2 fC)
- -time resolution: 30 ps
- spatial resolution: **50 microns**


RC1

Charge sharing studies (simulation + β source w/ ALTIROC1_v2)

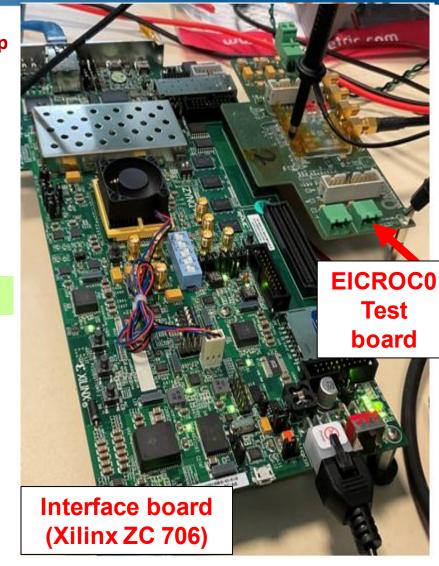
EICROC0 design:

- TZ Pre Amplifiers from ALTIROC (ATLAS/HGTD)
- 10 bit **TDC** from HGCROC (CMS, CEA/Irfu/DEDIP)
- 8 bit ADC for time-walk correction
 (AGH Krakow, adapted from HGCROC)

Compared to ALTIROC (ATLAS/HGTD), ToT TDC (non-linear behavior versus the deposited charge) replaced by an ADC



Status of EICROC0 Test Bench at UCLab



EICROC0 test bench operational at IJCLab since March '23

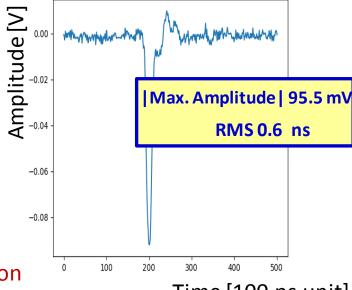
- ✓ I²C communication (firmware + software developments)
- ✓ Data stream written/read
- ✓ EICROCO DC levels
- ✓ Discri. threshold exploration
- ✓ EICROCO charge injection system (0 to 25 fC)
- **✓ EICROCO decoding (TDC, ADC) Firmware + software**
- **✓ External trigger**: signal directly injected into TDC

Status of EICROC0 Test Bench at UCLab

RC2

RC3

Preliminary studies [board w/ EICROC0, no AC-LGAD]

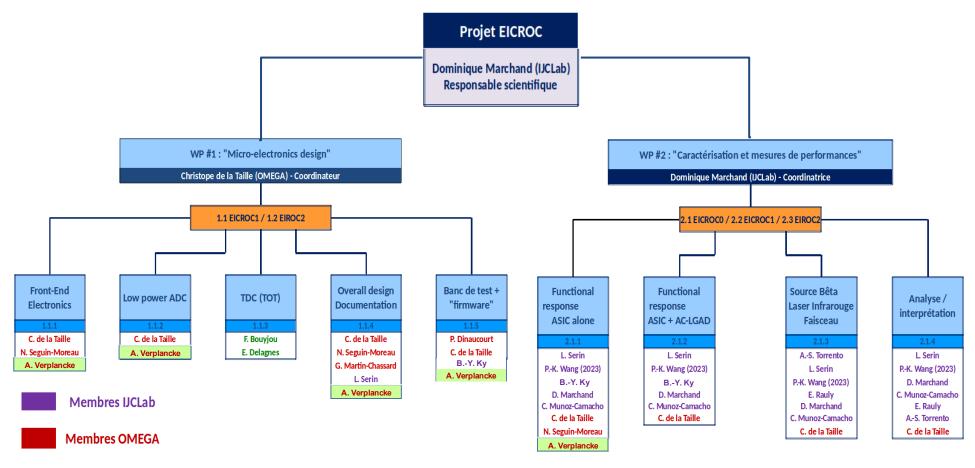

Typical **PA output signal** (12.5 fC input)

- > TZ Pre Amplifier output signals
 - S/N > 70 for 12.5 fC input (expectation S/N > 5 for 1 fC input)
 - Jitter evaluation: < 10 ps (12.5 fC), < 20 ps (3 fC)
- > TDC performance (alone):
 - Time resolution ~14 ps
 - quantification step (~25 ps) in fair agreement with design
- > ADC performance (alone) functional, performances to be evaluated
- > Investigation of noise / clock couplings on-going to drive next ASIC iteration
- > Evaluation of cross-talk between channels underway

Short term plan: to evaluate performances of the existing board

 $W/EICROCO + AC-LGAD (4 \times 4)$

Time [100 ps unit]


Rise (Fall) Time (RT) computed between 10% and 90% of |Max. - Ampl.|

RT 0.7 ns

Membres CEA/Irfu

- + 1 year postdoctoral position IJCLab (Fall 2023 ->)

AC-LGAD ASIC effort: Status (July '23)

Supported by DOE/eRD109 Consortium

- **EICROC developments** (OMEGA, CEA/Irfu, IJCLab in close collaboration with BNL):
 - EICROCO characterization on-going to drive next ASIC iteration
 - Individually each component shows performance in agreement with design
 - > Investigation of noise / clock couplings on-going to drive next ASIC iteration
 - > Evaluation of cross-talk between channels underway
 - additional test benches at OMEGA (operational), at BNL (shortly), at CEA/Irfu
 - EICROC French team reinforced

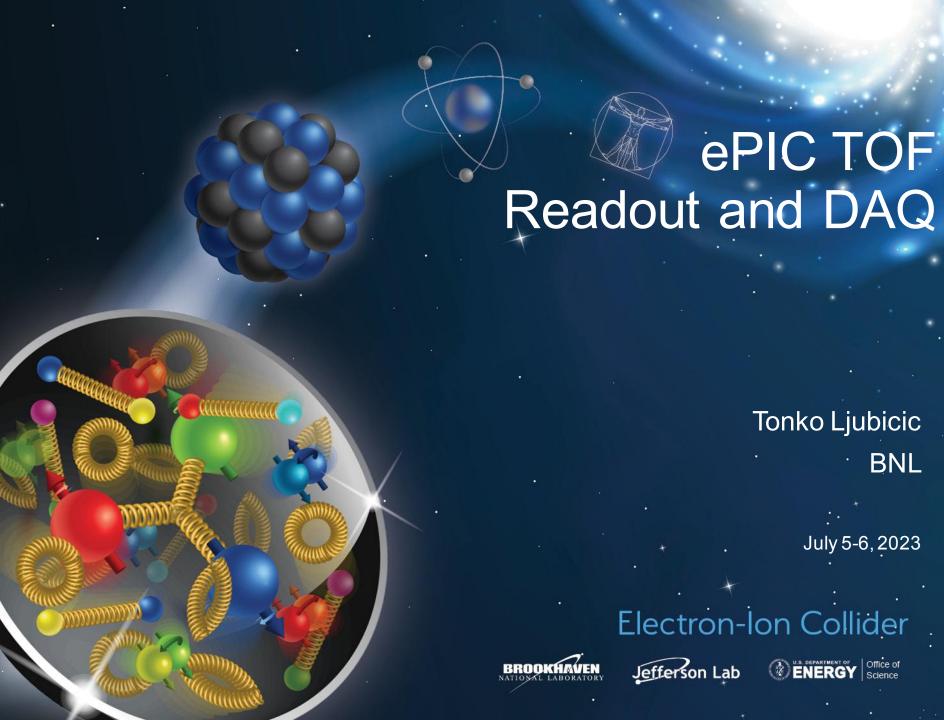
For risk mitigation: other AC-LGAD ASIC designs considered (eRD109 supports)

- > FCFD (Fermi Lab): FCFDv1, FCFDv2
- > UCSC/SCIPP: characterization of 3rd party ASICs: HPSoC, ASROC & FAST-2/3

RC3

RC4

AC-LGAD ASIC effort: perspectives


- \triangleright Characterization of a board with (EICROCO + AC-LGAD) + β source measurements
- > EICROC: stepping towards a 32 x 32 channels chip (EICROC2)
 - EICROC0_V1: updated EICROC0 fixing observed issues + lower power consumption ADC: end '23
 - EICROC1 including EIC clocking: Fall '24
 - **–** ./..
 - EICROC2 (32 x 32 channels): ~ 2026

For risk mitigation: other AC-LGAD ASIC designs will be pursued

- > FCFD (Fermi Lab)
- > UCSC/SCIPP: characterization of 3rd party ASICs: HPSoC, ASROC & FAST-2/3

RC3

RC4

Presentation Overview

- The ePIC TOF Readout Board(s)
 - One of the main components of the Readout Chain
 - Often called "Service Hybrid" in silicon detectors
 - Interface PCB between the ASICs (electrical) and DAQ (fiber)
 - Requirements
 - Different form factors for ETOF vs BTOF
- Integration and Common Features with the ePIC DAQ Group

Readout Board ("RDO")

- Main Readout Electronics Component
- Requirements
 - interfaces to the readout ASIC (E.g. EICROC)
 - provides the data path to the ASIC for configuration/control
 - provides the data path <u>from</u> the ASIC for data/status
 - provides low jitter clock(s) to the ASIC: **5 ps jitter**
 - very low jitter to be able to maintain a 30ps timing resolution
 - interfaces to ePIC DAQ via high speed fiber links
 - downlink
 - ASIC configuration data
 - clock recovery
 - uplink (in streaming mode)
 - ASIC data (and status)
 - small, cheap, low power
- Components
 - FPGA + associated configuration PROM
 - SFP+ fiber interface (~10 Gbs; likely asymmetric up/download)
 - PLLs and clock cleaners
 - connectors to the ASICs

Readout Board Design Stages

Stage 1 (now)

- The RDO is prototyped with a Xilinx Development Kit (e.g. Xilinx ZCU106)
- The sensor and EICROC ASIC is mounted on a separate PCB ("FEB") for prototyping
- FEB and RDO are connected via the FMC connector of the dev-kit as shown by Dominique in her presentation

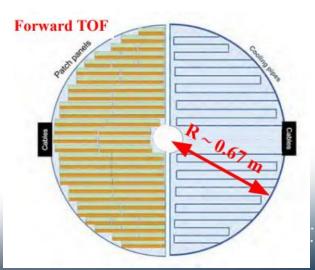
Stage 2

- The RDO is custom crafted using the FPGA and other components expected to be used for the "final" version (in concert with ePIC DAQ)
 - current FPGA choice is a Xilinx Artix Ultrascale+
- FEB (with ASIC & sensor) prototype continues to be connected via the FMC connector as in 1)

Stages 3+

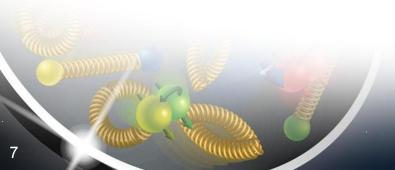
- The RDO is similar to Stage 2) but TOF-specific with the "final" choice of connectors and their numbers
- connected with TOF-specific cables to a TOF-specific invocation of the sensor+ASIC package
- at this Stage we will likely split the RDO into 2 flavors: ETOF & BTOF

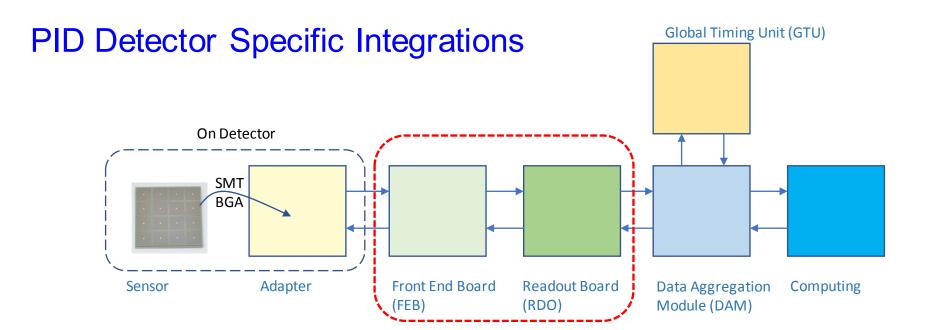
RDO Form Factors & Channel Counts


BTOF Readout Board

- 64 ASICs per RDO
- RDO is located at the end of the staves
 - similar to the STAR IST detector ->
- 288 RDOs total
 - 2.36M channels
- expected data rate is <0.6 Gbs/fiber

ETOF Readout Board


- from 24 to 48 ASICs per RDO
- RDO is situated in the plane of the Detector clam-shells (see Wei's presentation) →
- 212 RDOs total
 - 8.9M channels
- expected data rate is ~3 Gbs/fiber



Interfaces with ePIC DAQ

- We maintain a tight integration with the ePIC DAQ Group both for prototyping and later for final versions
 - choice of FPGA and configuration PROM
 - type, speed & protocols of the fiber links
 - clock recovery scheme (very important for TOF!)
 - design stages and use of FPGA development kits/boards
 - general philosophy and approach
- Actual design blocks (VHDL code) of the FPGA will be shared and/or developed within ePIC DAQ
 - general infrastructure & framework of the VHDL blocks
 - fiber to/from interfacing
 - including configuration/status
 - clock recovery blocks
 - I2C blocks (e.g. Temperature/Id chip readout)
- Only the ASIC-specific readout blocks will be provided by TOF and "glued" to the FPGA framework
- This approach provides maximum cost savings and risk reductions through commonalities across subsystems in ePIC DAQ

BACKUP

Detector	ASIC	RDO/Fiber	DAM	Data rate	Det. Tech
pfRICH	EICROC	17	1	15Gbs	LAPPD/HRPPD
dRICH	ALCOR	1252	30	1800Gbs	SiPM
hpDIRC	EICROC	288	6	11Gbs	LAPPD/HRPPD
TOF (B) TOF (FEC)	EICROC	240-500	12	6Gbps	LAPPD/HRPPD

EICROC0: EIC Roman Pots 4x4 AC-LGAD readout test chip MEGA

- > Submitted through a Multi Project Wafer (130 nm CMOS technology) in March 22 **EICROC0** chips delivered mid-July 22
- > Test board (PCB) designed by OMEGA, 10 pieces delivered end of July 22
 - test board partially cabled by IJCLab
- > Wire-bonding of EICROC0 to test boards by BNL collaborators
- > Delivery at IJCLab of 3 test boards w/ EICROC0 chip in Oct. 22
- ➤ Interface board (Xilinx ZC 706): (I²C communication)firmware/software developments (IJCLab)

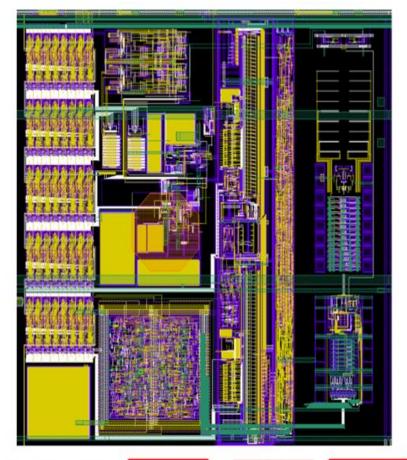
EICROCO chip elititititi diffiffiffi

ALITITIES OF

(III) HAITIILE

EICROC0: overview

- ➤ High speed TZ PA and discriminator (from ALTIROC)
- \triangleright I²C slow control (from CMS HGCROC)
- ➤ 8 bits 40 MHz ADC (adapted from HGCROC 10 bits ADC, M. Idzik et al., AGH Krakow)
- ➤ Digital readout FIFO (depth 8, 200 ns)
- ➤ 10 bits **TDC** (TOA) designed by **CEA Irfu/DEDIP**:


HGCROC TDC (1 mm x 120 μ m):

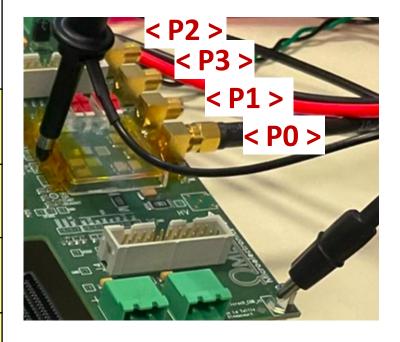
- spatially adapted to fit in a pixel of 0.5 x 0.5 mm²
- optimization in terms of dynamic range and resolution (10 ps rms) as well as power consumption
- common block for calibration of all TDC channels

★ 5 slow control bytes/pixel:

- 6 bits local threshold
- 6 bits ADC pedestal
- 16 TDC calibration bits
- Various on/off and probes

EICROCO layout (1 pad = 1 channel)

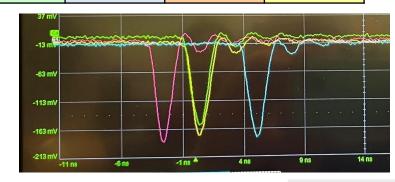
Slow control



TOA TDC 8b 40M ADC

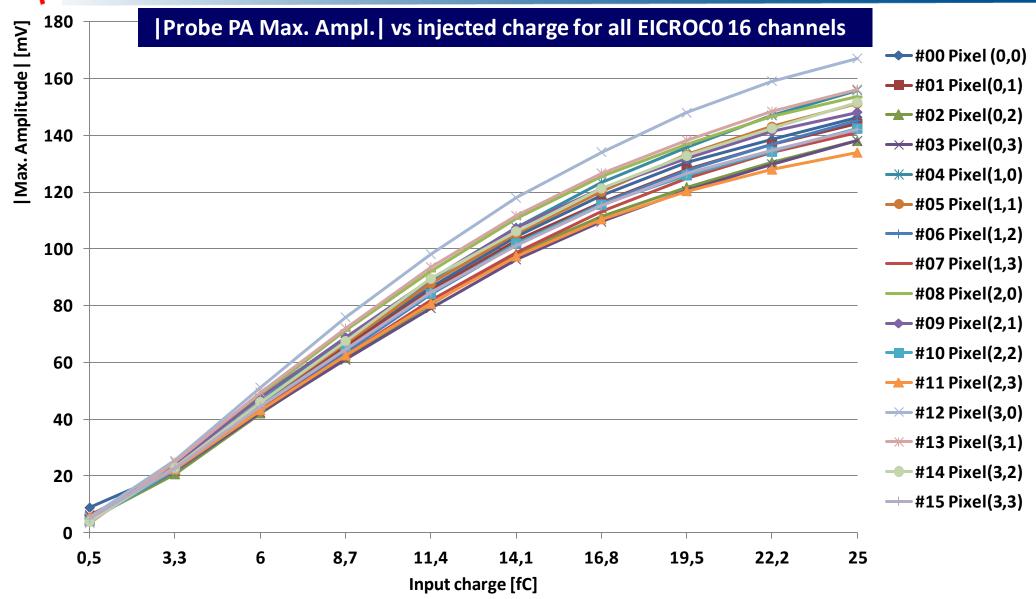
EICROCO TZ Pre Amplifier Probe output signals

Pixel / Channel Mapping	Column 0	Column 1	Column 2	Column 3
Line 0	Pixel (0,0)	Pixel (1,0)	Pixel (2,0)	Pixel (3 ,0)
	#00	# 04	#08	#12
Line 1	Pixel (0,1)	Pixel (1,1)	Pixel (2,1)	Pixel (3,1)
	# 01	#05	#09	#13
Line 2	Pixel (0,2)	Pixel (1,2)	Pixel (2,2)	Pixel (3 ,2)
	#02	#06	#10	#14
Line 3	Pixel (0,3)	Pixel (1,3)	Pixel (2,3)	Pixel (3 ,3)
	#03	#07	#11	#15


PA output signals through SMA connector s (PCB back plane)

Feature of EICROCO test board:

Observation of 4 Probe PA channels <u>simultaneously</u>


1 Probe PA per column

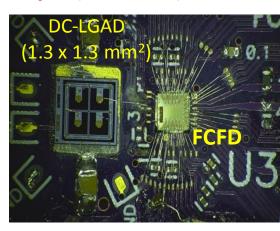
Ex.: #00, #04, #08, #12

EICROCO TZ Pre Amplifier Probe output signal amplitudes

Office of Science

From Artur Apresyan (FermiLab)

- Develop a robust fast-timing measurement technique for fast detector
- 30 ps time resolution or better
- easy to use & stable: no corrections, no calibration or threshold adjustement
- very low dead time after a hit (< 25 ns)


Methodology:

Goals:

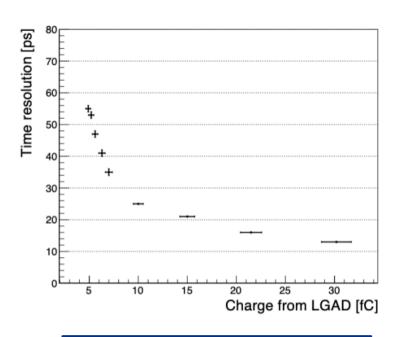
- * « A simulation model of front-end electronics for high precision timing measurements with LGAD », C. Peňa et al., NIM A 940 (2019) 119.
- ⇒ CFD outperforms Leading edge Discriminators for low amplitude signal (preferred for AC-LGAD charge sharing capability)

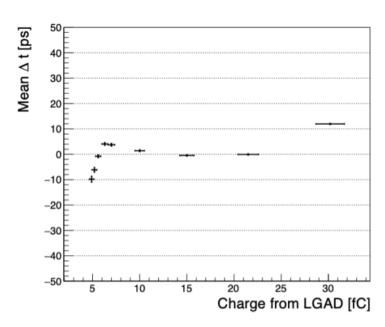
FCFDv0 (TSMC 65 nm CMOS technology)

- 1 single channel, only analog blocks to test CFD approach
- > Chip performance characterization with internal charge injection circuit Jitter: ~30 ps (5 fC); < 10 ps (30 fC)
- > + DC-LGAD (CMS-size pixel:1.3 x 1.3 mm²) 1 # wire-bonded IR Laser, Beta source ⇒ confirmation of expected time resolution: ~30 ps
- measurements at test beam facility will follow

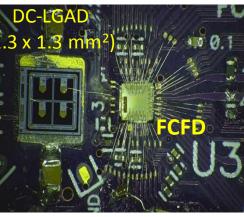
FCF

FCFD: Forward Constant Fraction Discriminator




From Artur Apresyan (FermiLab)

Timing ASIC with CFD FCFDv0


Measurements with laser confirm the excellent intrinsic performance of the ASIC in time resolution and low jitter

Jitter with 1.3x1.3 mm² LGAD sensor

FCFD perspectives

From Artur Apresyan

- ***FCFDv1** (TSMC 65 nm CMOS technology): design finalized, expected delivery from TSMC summer 2023 10 channels, analog blocks + ADC (charge measurement)
- > optimized for EIC AC-LGAD strips (500 μm pitch, 1 cm length)
- development of associated PCB test board
- characterization: late summer '23 ->
- > + AC-LGAD sensor < BNL

IR Laser & Beta source: fall '23; Test beam: fall-winter '23

- *FCFDv2 (TSMC 65 nm CMOS technology): design FY24, characterization FY25
- 10 channels, + digital readout
- development of associated PCB test board
- > + AC-LGAD sensor < BNL IR Laser, Beta source, Test beam

FCFD presentations at eRD112 meetings:

https://indico.bnl.gov/event/17999/ (01/04/23)

https://indico.bnl.gov/event/17084/ (09/14/22)

https://indico.bnl.gov/event/19471/ (05/16/23)

UCSC/SCIPP effort: 3rd party ASIC characterization

<u>Objective</u>: closely collaborating with 3rd party **institutions** and **companies** to **guide** ASIC developments **targetting EIC requirements** developing **PCB test boards** and performing **thorough characterization** (calibration; laser, 90Sr source with LGAD wire-bonded) allowing for ASIC performance comparison

Lead institution	Name	Tech	Output	n channels	Funding
INFN Torino	FAST	110 nm CMOS	TDC	20	INFN
NALU Sci.	HPSoC	65 nm CMOS	Waveform	$5 (\geq 81 \text{ final})$	DoE SBIR
Anadyne Inc.	ASROC	SiGe BiCMOS	Discrim.	16	DoE SBIR

Name	Specific goal	Status	
FAST	Large cap TDC	Testing, new version soon	
HPSoC	Max timing precision, digital back-end	Testing	
ASROC	Max timing precision, low power	Simulations finalized, Layout board	

- > optimized (EIC) HPSoC 4-ch prototype (High Pitch digitizer System on Chip): tapeout expected summer '23
- > ASROC: chip ready, waiting for delivery. Associated test board in fabrication
- ➤ INFN FAST: characterization of FAST-2 digital part; waiting for FAST-3 availability

SCIPP presentations at eRD112 meetings: https://indico.bnl.gov/event/17999/ (01/04/23)

https://indico.bnl.gov/event/16767/(09/06/22)

https://indico.bnl.gov/event/19471/ (05/16/23)