Current Status

* The previous plot | sent was somewhat optimistic, as | accidentally
indexed poorly and contaminated the test sample with one of the
files the network was trained on.

* But, by employing a learning rate scheduler set to decrease the
learning rate by 0.5 on a significant enough plateau, have been able
to create a steady increase in precision with more training time
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No further obvious room for improvement
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Huber Loss Function
Seems it can do better with more epochs
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Next Steps

* Loss shows precision can still improve, but need to improve efficiency
of network or use a cluster that can run the training for a very long
time to get better results

* Continue to work on tuning efficiency, fine-tune the learning rate
scheduler, and use UNH/Jlab/Brookhaven farm to run the training for
several days.
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Current Best Format:
Dense Network 4 110 60 3

Leaky Rel I(.gzlg; Rel Leaky Rel

— R Loss: Huber Loss

Or
| 2*arctan(y/x) — pi/2|

Optimizer: Adam

LR: 0.001, scheduled to decrease
by 0.5 at a plateau of 300 epochs
or more



Steps to Reproduce

e Use PyTorch to structure a sequential model, with Linear and Leaky RelLU
layers alternating

e Convert input and output files to Torch tensors
* Loop through some number of Epochs
* For each epoch, use the model on the input data set

 Compare the output to the known training data and calculate the loss using
some function

* Pass the loss to the backward function of the optimizer, which tunes the
model parameters

* Repeat and ideally the loss will decrease as you run over more epochs
e Save the model, load it with the same parameters to test



EICRecon Integration

* Training file can be completely separate, run as its own command to
update a parameter file

* EICRecon Factory can then pull from the parameter file with a
matching model structure

* Work so far is in Python — rewrite with c++ PyTorch frontend?
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