Current Status

* The previous plot | sent was somewhat optimistic, as | accidentally
indexed poorly and contaminated the test sample with one of the
files the network was trained on.

* But, by employing a learning rate scheduler set to decrease the
learning rate by 0.5 on a significant enough plateau, have been able
to create a steady increase in precision with more training time

107 4

10Y

101 4

Loss
Loss

107 1

T T T T 1 1
0 20000 40000 60000 80000 100000 0 lDGICIOD 200I000 300600 400:300 500000
Epochs Epochs

Custom Loss Function / Poor Combination of Parameters Huber Loss / Ideal-Ish Combination of Parameters

AP Pt

0.20

0.15

0.10

0.05

0.00

—0.05

—0.10

—0.15

—0.20

0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pt

Custom Loss Function
No further obvious room for improvement

1.6

AP Pt

0.20

0.15

0.10

0.05

0.00

—0.05

—0.10

—0.15

—0.20

0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pt

Huber Loss Function
Seems it can do better with more epochs

1.6

APy Py

Stdev: 2.51% Stdev: 2.31% Stdev: 1.95%

0.20
0.20 0.20
0.15 0.15 0.15
0.10
0.10 0.10
0.05
0.05 0.05
0.00 & -
= 0.00 S 0.00
S 3
-0.05
—0.05 —0.05
-0.10
—0.10 -0.10
-0.15
-0.15 015
-0.20
0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 16 —0.20
P 0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6 —0.20
B 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
t
Pt

5 hrs 16 hrs 25 hrs

APy Py

Stdev: 2.51% Stdev: 2.31% Stdev: 1.95%

0.20
0.20 0.20
0.15 0.15 0.15
0.10
0.10 0.10
0.05
0.05 0.05
0.00 & -
= 0.00 S 0.00
S 3
-0.05
—0.05 —0.05
-0.10
—0.10 -0.10
-0.15
-0.15 015
-0.20
0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 16 —0.20
P 0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6 —0.20
B 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
t
Pt

5 hrs 16 hrs 25 hrs

Next Steps

* Loss shows precision can still improve, but need to improve efficiency
of network or use a cluster that can run the training for a very long
time to get better results

* Continue to work on tuning efficiency, fine-tune the learning rate
scheduler, and use UNH/Jlab/Brookhaven farm to run the training for
several days.

0.20

0.20

0.15

0.15

0.10

0.10

0.05

0.05

0.00

dldv

0.00

“dl*dv

—0.05

—0.05

—0.10

—0.10

—0.15

—0.15

—0.20

—0.20

200 210 220 230 240 250 260 270 280

190

Pz

Current Best Format:
Dense Network 4 110 60 3

Leaky Rel I(.gzlg; Rel Leaky Rel

— R Loss: Huber Loss

Or
| 2*arctan(y/x) — pi/2|

Optimizer: Adam

LR: 0.001, scheduled to decrease
by 0.5 at a plateau of 300 epochs
or more

Steps to Reproduce

e Use PyTorch to structure a sequential model, with Linear and Leaky RelLU
layers alternating

e Convert input and output files to Torch tensors
* Loop through some number of Epochs
* For each epoch, use the model on the input data set

 Compare the output to the known training data and calculate the loss using
some function

* Pass the loss to the backward function of the optimizer, which tunes the
model parameters

* Repeat and ideally the loss will decrease as you run over more epochs
e Save the model, load it with the same parameters to test

EICRecon Integration

* Training file can be completely separate, run as its own command to
update a parameter file

* EICRecon Factory can then pull from the parameter file with a
matching model structure

* Work so far is in Python — rewrite with c++ PyTorch frontend?

	Slide 1: Current Status
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Next Steps
	Slide 7
	Slide 8
	Slide 9: Steps to Reproduce
	Slide 10: EICRecon Integration

