
Current Status

• The previous plot I sent was somewhat optimistic, as I accidentally
indexed poorly and contaminated the test sample with one of the
files the network was trained on.

• But, by employing a learning rate scheduler set to decrease the
learning rate by 0.5 on a significant enough plateau, have been able
to create a steady increase in precision with more training time

Custom Loss Function / Poor Combination of Parameters Huber Loss / Ideal-Ish Combination of Parameters

Custom Loss Function
No further obvious room for improvement

Huber Loss Function
Seems it can do better with more epochs

5 hrs 16 hrs 25 hrs

Stdev: 2.51% Stdev: 2.31% Stdev: 1.95%

5 hrs 16 hrs 25 hrs

Stdev: 2.51% Stdev: 2.31% Stdev: 1.95%

0.05
0.03 0.025

Next Steps

• Loss shows precision can still improve, but need to improve efficiency
of network or use a cluster that can run the training for a very long
time to get better results

• Continue to work on tuning efficiency, fine-tune the learning rate
scheduler, and use UNH/Jlab/Brookhaven farm to run the training for
several days.

Current Best Format:
Dense Network 4 110 60 3

Loss: Huber Loss
Or
|2*arctan(y/x) – pi/2|

Optimizer: Adam
LR: 0.001, scheduled to decrease
by 0.5 at a plateau of 300 epochs
or more

Leaky ReLu
(0.05)

Leaky ReLu
(0.05)

Leaky ReLu
(0.05)

Steps to Reproduce
• Use PyTorch to structure a sequential model, with Linear and Leaky ReLU

layers alternating
• Convert input and output files to Torch tensors
• Loop through some number of Epochs
• For each epoch, use the model on the input data set
• Compare the output to the known training data and calculate the loss using

some function
• Pass the loss to the backward function of the optimizer, which tunes the

model parameters
• Repeat and ideally the loss will decrease as you run over more epochs
• Save the model, load it with the same parameters to test

EICRecon Integration

• Training file can be completely separate, run as its own command to
update a parameter file

• EICRecon Factory can then pull from the parameter file with a
matching model structure

• Work so far is in Python – rewrite with c++ PyTorch frontend?

	Slide 1: Current Status
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Next Steps
	Slide 7
	Slide 8
	Slide 9: Steps to Reproduce
	Slide 10: EICRecon Integration

