Gaia, an all-sky astrometric and photometric survey

Josep Manel Carrasco on behalf of Gaia-photometry group University of Barcelona, ICCUB-IEEC

Precision Astronomy with fully depleted CCDs, 1-2 Dec 2016

Focal plane

106 CCDs , 938 million pixels, 2800 cm² pixel size= 59 mas, angular resolution=0.12"

Photometric instruments

Photometric instruments

Photometric passbands

Spectrophotometry: instrument

Red spectra of a M-dwarf (V=17.3)

Red box: extracted window sent to the Earth

Window size: 60x12 = 3.54" x 2.12"

2D and 1D windows

Spectrophotometry: examples

Spectrophotometry: examples

Examples

CCD flatfields

PSF map

Aperture correction

Median AL FWHM = 103 mas

Fabricius et al (2016)

Aperture correction

1-2% variation

AF S9R1T2

Maximum AC motion

Calibration as function of colour, centring offset and AC motion

Background

CTI effect on BP/RP spectra

CTI distorts the shape of the spectra \rightarrow Worse redshifts 2 methods to face the problem: Reconstruction vs Prediction

Contamination

BP/RP processing: Dispersion and LSF

Crowding

Crowding evaluation classifies BP/RP **transits** as "isolated", "contaminated" or "blended" and produces a mask indicating which samples can be used for background modelling.

Figure courtesy Anthony Brown

It is unfeasible to have enough standard sources available

Calibration units in GDR1 (14 Sep 2016)

Large Scale (LS): CCD level. Daily basis Small Scale (SS): Groups of columns. 14 months

Carrasco et al (2016)

AF LS 7 $8/9$ 10 2 - 420 $529\ 200 \rightarrow$	⊷1260 CU/day
AF SS 7 8/9 10 - 492 1 309 960	
$BP/RP LS 7 1 6 2 - 420 35280 \rightarrow 3$	⊦84 CU/day
BP/RP SS 7 1 6 - 492 1 20664	

Number of calibration units (CU) in DR1 (14 months)

Number of observations per CU in GDR1 (using all sources):

Instrum.	Window	Gate	$t_{\exp}(s)$	G range	$N_{\rm obs}^{\rm LS}$	$N_{\rm obs}^{\rm SS}$
AF	WC0	Gate04	0.02	<i>G</i> < 8.5	300	400
AF	WC0	Gate07	0.13	8.5–9.5	300	450
AF	WC0	Gate08	0.25	9.5-10.0	600	1000
AF	WC0	Gate09	0.50	10.0 - 11.0	700	1100
AF	WC0	Gate10	1.00	11.0 - 12.0	1900	3000
AF	WC0	Gate11	2.01	12.0 - 12.2	1000	1200
AF	WC0	Gate12	2.85	12.2-12.4	1800	2500
AF	WC0	None	4.41	12.4-13.0	12 000	23 000
AF	WC1	None	4.41	13.0-16.0	150 000	290 000
AF	WC2	None	4.41	G > 16.0	2 200 000	3 600 000

Principles of processing: self-calibration

Variety of "instruments":

CCDs, columns, telescopes, ...

Variety of **configurations**:

1D, 2D, narrow & large windows, gates, ...

Variety of **sources** to be observed (stars, galaxies, QSO, SSO, SNe, ...) with different configurations

Time variations of both sources and instrument through the mission (5 years)

Ubercalibration: Relative calibration of differences among instruments and configurations. All "well-behaved" sources can be used as internal standards

1 billion sources If only 10% are "well-behaved" \rightarrow 100 million sources as standards

Absolute calibration through relatively 100-200 ground-based standards

PhotPipe

Observations

Gaia-RP spectra

30

sample

0.025

0.02

Counts [normalised]

0.005

V1293 Aql (M5III VY UMa (C star)

HR3580 (K5)

HD213048 (K0) HD64000 (G8III)

HD151196 (F2IV

HD207165 (A3)

10

20

Calibration

- Internal calibrators millions of sources
- External calibrators
 ~ 200 SPSS
 (Pancino et al 2012)

Output

40

50

60

UNIVERSITAT DE BARCELONA

PhotPipe structure

Carrasco et al (2016)

Passband internal calibration in GDR1

Colour dependence

Colour dependence calibrated with Spectral Shape Coefficients Linear terms for dependences

- The several calibration units (CUs) are treated separately
- Every CU potentially defines a photometric instrument/system
- To converge to a unique "mean" instrument, one needs a large amount of sources observed with different CUs
- If there is poor mixing, there will be differences among the several CUs

For DR1 (only 14 months with some gaps), we introduced additional steps:

- Gate/window link (to account for poor mixing)
- Time link (to account for decontamination events)

Gate/window link

Before calibration

At G=13, acquisition windows change from 2D (PSF fitting) to 1D (LSF fitting)

After calibration

Carrasco et al (2016)

0.000000000000

Time link (contamination)

TLC AF6

Riello et al (in prep)

Gaia-DR1: photometry

Error on the weighted mean G value for a source with ~ 100 CCD transits

- Systematics of ~10 mmag (comparison with external catalogues)
- Science performances: Gaia webpage

gaia Cesa PPAC

Gaia-DR1: photometry

RR Lyrae

(RRab)

Gaia-DR1: Photometric transformations

Photometric relationships with SDSS, Johnson, Hipparcos, Tycho and HST are provided in Gaia-DR1.

Data releases scenario 0.1: First release, 14th Sep 2016 0.01: G passband 0.001 FoV transit [mag] - 6 BP for V-I = 2 mag 0.1 0.0001: RP for V-I = 2 mag 5 0.01 0.00001 10 11 12 13 14 15 16 17 18 19 20 21 Gma 0.001 Photometric Second release, Q4-2017 G_{XP} passbands 0.0001 10 11 12 13 14 15 17 19 20 G [mag 8 6 Flux [10⁻¹⁶ W m⁻² nm⁻¹] nm-'] 5 6 т⁻² [10⁻¹⁶ W Third release 2018 (TBC) 4 3 **XP** spectra 2 2 Flux 0 0 400 600 800 1000 400 600 800 1000 Wavelength [nm] Wavelength [nm]

scatter

Synthetic photometry

We use FAIM (Functional Analytic Instrument Model) formalism

Example of Synthetic photometry: SDSS

Fitted SNR_x=f(G,G_{BP}-G_{RP}) relationships from synthetic photometry (BaSeL-3.1 + WDs) will be made available in GOG simulator (SDSS, Johnson, Hipparcos/Tycho, ...)

Gaia Universe Model Snapshot Robin et al (2012)

Stars with G<20 for a FoV=4°

- Galactic center: *I*=10° *b*= 0°
- Quadrature: I=90°, b=0°
- Anticenter: I=180°, b=0°
- Galactic North Pole: I=0°, b=90°

G	ρ _{center} (star/deg²)	ρ _{quadrature} (star/deg²)	P _{anticenter} (star/deg²)	ρ _{pole} (star/deg²)
<16	15766	17256	9052	454
16-17	15231	17167	6857	271
17-18	27295	28527	10921	407
18-19	48206	46642	15676	607
19-20	81088	76598	20832	868
All	187586	186204	63338	2607

Galactic Center : (I,b) = (10,0)
Quadrature : (I,b) = (90,0)
Galactic anticenter : (I,b) = (180,0)

Galactic North Pole : (I,b) = (0,90)

SNR for the simulated sample

Galactic direction (1 = Center, 2 = Quadrature, 3 = Anticenter, 4 = North Pole)

Conclusion: Gaia photometry is unique

- Gaia is not only very good astrometry
- Gaia is an homogeneous all-sky coverage 10^9 sources with $G_{\rm lim} \sim 20.5$
- Integrated photometry (G, G_{BP} and G_{RP} passbands) End-of-mission uncertainty at mmag level
- Spectrophotometry down to $G_{\lim} \rightarrow$ Physical parameters
- Variability detection (*G*-band, 5 years)
- Space angular resolution
- Absolute calibration at 1% level accuracy

Gaia will be a wonderful source of good quality photometric standards for future projects (LSST, Euclid, J-PAS, ...)

Thanks

More information in A&A Gaia-Release 1 special volume (2016)

- Gaia Mission & 1st release: Gaia Collaboration (2016)
- Photometric Calibration: Carrasco et al (2016)
- Initial Data Treatment: Fabricius et al (2016)
- Gaia CCDs: Crowley et al (2016)

Fig: ESA/Gaia-CC BY-SA 3.0 IGO

