Measurements and Simulations of the Brighter-Fatter Effect in CCD Sensors

Craig Lage

December 2, 2016

Acknowledgements: Tony Tyson, Andrew Bradshaw, Kirk Gilmore, Perry Gee

- Solving for potentials and fields.
- Tracking electrons in the lattice.
- Spot size measurements and simulations.
- Pixel distortions and pixel-pixel correlations.
- Modeling saturation effects.
- Conclusions and next steps.

Typical Simulation $100 \mu m$ Cube.

- Poisson's equation solved using multi-grid methods.
- $100\mu m$ Cube. 10 X 10 pixels in X and Y.
- 32 grid cells per pixel cell size = 0.31 μ .
- Typical single core performance:
 - Poisson Solution pprox 10 seconds.
 - Electron Tracking \approx 300 e-/second.

Pixel Array Summary Plot

 $x_{:J,z})/\epsilon_{Si}$ [V/um² 0.0 -2.5 -5.0-7.5 -10.0 80 85 90 [V] [V]80 85 90

10.0

7.5

5.0

2.5

Pixel Region Charges and Potentials

Diffusion Model

• Mobility: $\mu(E, T)$ calculated from Jacobini model

•
$$\mu = 1584 \frac{\mathrm{cm}^2}{\mathrm{V-sec}}$$
 at $\mathrm{E} = 6000 \frac{\mathrm{V}}{\mathrm{cm}}$

• Collision time:

•
$$au = rac{\mathrm{m}_{\mathrm{e}}^{*}}{\mathrm{q}_{\mathrm{e}}}\mu$$

- τ typically about 0.9 ps.
- $\bullet~\delta t$ drawn from exponential distribution with mean of τ

•
$$V_{\rm th} = \sqrt{\frac{3kT}{2m_e^*}}$$

- $V_{\rm th} \approx \mu E$
- Each thermal step in a random direction in 3 dimensions.
- Typically about 1000 steps to propagate to the collecting well.

Movie of Pixel Filling - First 10,000 Electrons

Impact of electron diffusion

Basics of the Brighter-Fatter Effect

Diffusion turned off here.

Pixel empty of charge

• Electrons stored in the potential well repel incoming electrons and push them into surrounding pixels.

LSST Optical Simulator and Typical Spot Images

UC Davis 1:1 Re-Imager

Typical Image of 30 micron Spots:

Tyson, et.al., "The LSST Beam Simulator", SPIE 9154-67 (2014), arXiv:1411.5667.

Typical Brighter-Fatter Effect Measurements - ITL 3800

Simulation Strategy for B-F effect.

- Solve Poisson's equation for postage stamp with all pixels empty.
- Choose a random location within the central pixel.
- Determine starting locations for N electrons in a 2D Gaussian spot.
- Propagate these electrons down to their collecting gates.
- Re-solve Poisson's equation with these wells now containing the appropriate charge.
- Repeat with N more electrons.
- I have been using 10,000 electrons per step, which places about 1000 electrons in the central pixel, so about 100 iterations are needed to fill the central pixel.
- In practice, repeat for more than one spot (typically 64), each with a different central location.
- Typical run takes \approx 6 hours.

VBB = -60V

VBB = -10V

Pixel Shape Distortion due to Collected Charge

14 / 25

Pixel Areas and Correlations

Simulations vs ITL 3800 Measurements

- Antilogus, et al., JINST 9C3048 (2014), arXiv:1402.0725.
- Rasmussen, A., JINST 904027 (2014), arXiv:1403.3317.

Saturated Spot Profiles

- Simulated profiles never flatten out.
- "Cutoff" may happen in charge transfer instead of charge collection, either in the array or outside the array in the serial transfer.

Movie of Charge Transfer - 50K Electrons

Electron Charge Distribution, T=200 ns

Movie of Charge Transfer - 200K Electrons

Electron Charge Distribution, T=200 ns

Conclusions and Next Steps

- We have had good success in simulating the Brighter-Fatter Effect:
 - Direct Spot Size Measurements.
 - Pixel Correlation Measurements.
- Biggest uncertainty concerns state of channel stop region:
 - Best fits to measurements obtained with the assumption that the channel stop region is not fully depleted, but contains free holes. However, I am still uncertain of this conclusion.
 - Plan to obtain physical measurements (SIMS) of dopant profiles.
- Simulations are not fitting saturation full well effects:
 - Attempting to determine how much of full well effect is due to charge collection, and how much is due to charge transfer.
- Latest code, with documentation and examples, is at: https://github.com/craiglagegit/Poisson_CCD22

Back-Ups

Pixel Vertex Movement with Charge

Linear relationship of vertex motion with charge implies superposition should work.

- If superposition works, we can do the following:
 - Solve (one time) Poisson's equation with one pixel containing N electrons, all surrounding pixels empty.
 - Determine displacement of pixel vertices (out to +/- M pixels away) per electron.
 - For general case where many pixels contain a varying amount of charge, sum up vertex displacements to determine pixel vertices.
 - For what follows, went up to 4 pixels away, and used 260 vertices / pixel (4 corners + 64 vertices per edge). This is probably more resolution than is needed.

GalSim Comparisons - Calculate pixel distortions every 10,000 photons

With B-F, No Diffusion

With B-F, With Diffusion

Measurements

Superposition Test 1

Average Area Error = 0.0139 percent Average Vertex Error = 0.0003 microns Worst Case Area Error = 0.0551 percent Worst Case Vertex Error = 0.0669 microns

- Left Full Physics-based simulation, solving Poisson's equation and finding pixel vertices through binary search. Simulation Time 10's of minutes.
- Right Take pixel vertex displacement from a single Physics-based run with one pixel containing 80K e-, and superpose the displacements for the two pixels containing charge. Simulation Time - << 1sec. 24/25

Superposition Test 2

Average Area Error = 0.0242 percent Average Vertex Error = 0.0003 microns Worst Case Area Error = 0.0682 percent Worst Case Vertex Error = 0.0638 microns

- Left Full Physics-based simulation, solving Poisson's equation and finding pixel vertices through binary search. Simulation Time 10's of minutes.
- Right Take pixel vertex displacement from a single Physics-based run with one pixel containing 80K e-, and superpose the displacements for the three pixels containing charge. Simulation Time - << 1sec. 25/25