Measurements and Simulations of the Brighter-Fatter Effect in CCD Sensors

Craig Lage

December 2, 2016

Acknowledgements:
Tony Tyson, Andrew Bradshaw, Kirk Gilmore, Perry Gee

Outline

- Solving for potentials and fields.
- Tracking electrons in the lattice.
- Spot size measurements and simulations.
- Pixel distortions and pixel-pixel correlations.
- Modeling saturation effects.
- Conclusions and next steps.

Typical Simulation $100 \mu \mathrm{~m}$ Cube.

- Poisson's equation solved using multi-grid methods.
- $100 \mu \mathrm{~m}$ Cube. -10×10 pixels in X and Y .
- 32 grid cells per pixel - cell size $=0.31 \mu$.
- Typical single core performance:
- Poisson Solution ≈ 10 seconds.
- Electron Tracking $\approx 300 \mathrm{e}-/$ second.

Pixel Array Summary Plot

Potential(z=0)

Charges

Potential(z=2.56)

Pixel Region Charges and Potentials

Diffusion Model

- Mobility: $\mu(E, T)$ calculated from Jacobini model

- $\mu=1584 \frac{\mathrm{~cm}^{2}}{\mathrm{~V}-\mathrm{sec}}$ at $\mathrm{E}=6000 \frac{\mathrm{~V}}{\mathrm{~cm}}$
- Collision time:
- $\tau=\frac{\mathrm{m}_{\mathrm{e}}^{*}}{\mathrm{q}_{\mathrm{e}}} \mu$
- τ typically about 0.9 ps .
- $\delta \mathrm{t}$ drawn from exponential distribution with mean of τ
- $\mathrm{V}_{\mathrm{th}}=\sqrt{\frac{3 \mathrm{kT}}{2 \mathrm{~m}_{\mathrm{e}}^{*}}}$
- $\mathrm{V}_{\mathrm{th}} \approx \mu \mathrm{E}$
- Each thermal step in a random direction in 3 dimensions.
- Typically about 1000 steps to propagate to the collecting well.

Movie of Pixel Filling - First 10,000 Electrons

Impact of electron diffusion

Basics of the Brighter-Fatter Effect

Diffusion turned off here.

Pixel empty of charge

Diffusion turned off here.

- Electrons stored in the potential well repel incoming electrons and push them into surrounding pixels.

LSST Optical Simulator and Typical Spot Images

UC Davis 1:1 Re-Imager

Typical Image of 30 micron Spots:

Typical Brighter-Fatter Effect Measurements - ITL 3800

SEGMENT02

SEGMENT03

SEGMENT12

SEGMENT13

Many measurements have been made under different conditions.

Simulation Strategy for B-F effect.

- Solve Poisson's equation for postage stamp with all pixels empty.
- Choose a random location within the central pixel.
- Determine starting locations for N electrons in a 2D Gaussian spot.
- Propagate these electrons down to their collecting gates.
- Re-solve Poisson's equation with these wells now containing the appropriate charge.
- Repeat with N more electrons.
- I have been using 10,000 electrons per step, which places about 1000 electrons in the central pixel, so about 100 iterations are needed to fill the central pixel.
- In practice, repeat for more than one spot (typically 64), each with a different central location.
- Typical run takes ≈ 6 hours.

Measurements vs Simulations

$V B B=-60 V$

Brighter-Fatter Spot Size Simulations vs Measuremel

$V B B=-10 V$
Brighter-Fatter Spot Size Simulations vs Measurements

Pixel Shape Distortion due to Collected Charge

Pixel Areas and Correlations

Electron Charge Distribution

Simulations vs ITL 3800 Measurements

- Antilogus, et al., JINST 9C3048 (2014), arXiv:1402.0725.
- Rasmussen, A., JINST 904027 (2014), arXiv:1403.3317.

Saturated Spot Profiles

Measurements ITL 3800
Saturation Images vs Total Electrons $\mathrm{Vpl}=-8, \mathrm{Vph}=4, \mathrm{Ph}=2, \mathrm{Vog}=0$

Simulation

Saturation Images vs Total Electrons - Simulated

- Simulated profiles never flatten out.
- "Cutoff" may happen in charge transfer instead of charge collection, either in the array or outside the array in the serial transfer.

Movie of Charge Transfer - 50K Electrons

Electron Charge Distribution, T=200 ns

Movie of Charge Transfer - 200K Electrons

Electron Charge Distribution, T=200 ns

Conclusions and Next Steps

- We have had good success in simulating the Brighter-Fatter Effect:
- Direct Spot Size Measurements.
- Pixel Correlation Measurements.
- Biggest uncertainty concerns state of channel stop region:
- Best fits to measurements obtained with the assumption that the channel stop region is not fully depleted, but contains free holes. However, I am still uncertain of this conclusion.
- Plan to obtain physical measurements (SIMS) of dopant profiles.
- Simulations are not fitting saturation full well effects:
- Attempting to determine how much of full well effect is due to charge collection, and how much is due to charge transfer.
- Latest code, with documentation and examples, is at: https://github.com/craiglagegit/Poisson_CCD22

Back-Ups

Pixel Vertex Movement with Charge

Linear relationship of vertex motion with charge implies superposition should work.

Superposition Strategy

- If superposition works, we can do the following:
- Solve (one time) Poisson's equation with one pixel containing N electrons, all surrounding pixels empty.
- Determine displacement of pixel vertices (out to $+/-\mathrm{M}$ pixels away) per electron.
- For general case where many pixels contain a varying amount of charge, sum up vertex displacements to determine pixel vertices.
- For what follows, went up to 4 pixels away, and used 260 vertices / pixel (4 corners +64 vertices per edge). This is probably more resolution than is needed.

GalSim Comparisons - Calculate pixel distortions every 10,000 photons

No B-F Effect

With B-F, No Diffusion

With B-F, With Diffusion

Measurements

Superposition Test 1

Average Area Error $=0.0139$ percent
Average Vertex Error $=0.0003$ microns
Worst Case Area Error $=0.0551$ percent
Worst Case Vertex Error $=0.0669$ microns

- Left - Full Physics-based simulation, solving Poisson's equation and finding pixel vertices through binary search. Simulation Time - 10's of minutes.
- Right - Take pixel vertex displacement from a single Physics-based run with one pixel containing 80 K e-, and superpose the displacements for the two pixels containing charge. Simulation Time $-\ll 1$ sec.

Superposition Test 2

Average Area Error $=0.0242$ percent
Average Vertex Error $=0.0003$ microns
Worst Case Area Error $=0.0682$ percent
Worst Case Vertex Error $=0.0638$ microns

- Left - Full Physics-based simulation, solving Poisson's equation and finding pixel vertices through binary search. Simulation Time - 10's of minutes.
- Right - Take pixel vertex displacement from a single Physics-based run with one pixel containing $80 \mathrm{~K} \mathrm{e-}$, pixels containing charge. Simulation Time $-\ll 1$ sec.

